BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 15338132)

  • 1. A cytogenetic method for stacking gene pairs in common wheat.
    Thomas J; Riedel E; Benabdelmouna A; Armstrong K
    Theor Appl Genet; 2004 Oct; 109(6):1115-24. PubMed ID: 15338132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Resolving capacity of monosomic line analysis in cytogenetic studies of common wheat].
    Zharkov NA
    Tsitol Genet; 2004; 38(3):22-8. PubMed ID: 15619985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II.
    Friebe B; Zhang P; Linc G; Gill BS
    Cytogenet Genome Res; 2005; 109(1-3):293-7. PubMed ID: 15753589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cytogenetic identification of a wheat (Triticum aestivum)-American dune grass (Leymus mollis) translocation line resistant to stripe rust.
    Bao Y; Wang J; He F; Ma H; Wang H
    Genet Mol Res; 2012 May; 11(3):3198-206. PubMed ID: 22653669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissection and cytological mapping of barley chromosome 2H in the genetic background of common wheat.
    Joshi GP; Nasuda S; Endo TR
    Genes Genet Syst; 2011; 86(4):231-48. PubMed ID: 22214592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Genetic mapping of the intergenomic translocated "taigu" genic sterility gene (Ms2)].
    Fu DX; Ruan RW; Wen HX; Chen YP; Zong XF; Yin JM; Dai XM; Zhang JK
    Yi Chuan Xue Bao; 2002 Dec; 29(12):1085-94. PubMed ID: 12693100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FISH landmarks reflecting meiotic recombination and structural alterations of chromosomes in wheat (Triticum aestivum L.).
    Zou Y; Wan L; Luo J; Tang Z; Fu S
    BMC Plant Biol; 2021 Apr; 21(1):167. PubMed ID: 33823797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytogenetic Behavior of Trigeneric Hybrid Progeny Involving Wheat, Rye and Psathyrostachys huashanica.
    Kang HY; Huang J; Zhu W; Li DY; Diao CD; Tang L; Wang Y; Xu LL; Zeng J; Fan X; Sha LN; Zhang HQ; Zheng YL; Zhou YH
    Cytogenet Genome Res; 2016; 148(1):74-82. PubMed ID: 27116422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome Rearrangements Caused by Double Monosomy in Wheat-Barley Group-7 Substitution Lines.
    Danilova TV; Friebe B; Gill BS; Poland J; Jackson E
    Cytogenet Genome Res; 2018; 154(1):45-55. PubMed ID: 29486464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method to produce radiation hybrids for the D-genome chromosomes of wheat (Triticum aestivum L.).
    Riera-Lizarazu O; Leonard JM; Tiwari VK; Kianian SF
    Cytogenet Genome Res; 2010 Jul; 129(1-3):234-40. PubMed ID: 20501975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic constitution and variation in five partial amphiploids of wheat--Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis.
    Han F; Liu B; Fedak G; Liu Z
    Theor Appl Genet; 2004 Sep; 109(5):1070-6. PubMed ID: 15197444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SSR-based linkage map with new markers using an intraspecific population of common wheat.
    Torada A; Koike M; Mochida K; Ogihara Y
    Theor Appl Genet; 2006 Apr; 112(6):1042-51. PubMed ID: 16450184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a deletion and genetic linkage map for the 5A and 5B chromosomes of wheat (Triticum aestivum).
    Gadaleta A; Giancaspro A; Giove SL; Zacheo S; Incerti O; Simeone R; Colasuonno P; Nigro D; Valè G; Cattivelli L; Stanca M; Blanco A
    Genome; 2012 Jun; 55(6):417-27. PubMed ID: 22624876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytomolecular identification of individual wheat-wheat chromosome arm associations in wheat-rye hybrids.
    Megyeri M; Molnár-Láng M; Molnár I
    Cytogenet Genome Res; 2013; 139(2):128-36. PubMed ID: 23306424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytogenetics of Triticum x Dasypyrum hybrids and derived lines.
    Minelli S; Ceccarelli M; Mariani M; De Pace C; Cionini PG
    Cytogenet Genome Res; 2005; 109(1-3):385-92. PubMed ID: 15753601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristic of the univalent behavior in a series of monosomic lines of wheat Milturum 553 cultivar in the second meiotic division of microsporocytes].
    Zharkov NA
    Tsitol Genet; 2003; 37(5):41-8. PubMed ID: 14650326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin, structure, and behavior of a highly rearranged deletion chromosome 1BS-4 in wheat.
    Qi L; Friebe B; Gill BS
    Genome; 2005 Aug; 48(4):591-7. PubMed ID: 16094425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cytomolecular approach to assess the potential of gene transfer from a crop (Triticum turgidum L.) to a wild relative (Aegilops geniculata Roth.).
    Cifuentes M; Blein M; Benavente E
    Theor Appl Genet; 2006 Feb; 112(4):657-64. PubMed ID: 16333611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosomal location of powdery mildew resistance genes and cytogenetic analysis of meiosis in common wheat cultivar Meri.
    Peusha H; Enno T; Priilinn O
    Hereditas; 2000; 132(1):29-34. PubMed ID: 10857256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of near-isogenic lines and marked monosomic lines in common wheat (Triticum aestivum) cv. Chinese Spring.
    Tsujimoto H
    J Hered; 2001; 92(3):254-9. PubMed ID: 11447241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.