These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15338432)

  • 1. Mechanical properties of mono-domain side chain nematic elastomers.
    Martinoty P; Stein P; Finkelmann H; Pleiner H; Brand HR
    Eur Phys J E Soft Matter; 2004 Aug; 14(4):311-21. PubMed ID: 15338432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear mechanical anisotropy of side chain liquid-crystal elastomers: influence of sample preparation.
    Rogez D; Francius G; Finkelmann H; Martinoty P
    Eur Phys J E Soft Matter; 2006 Aug; 20(4):369-78. PubMed ID: 16896566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Commentary on "Mechanical properties of monodomain side chain nematic elastomers" by P. Martinoty et al.
    Stenull O; Lubensky TC
    Eur Phys J E Soft Matter; 2004 Aug; 14(4):333-7; author reply 339-40. PubMed ID: 15365857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commentary on "Mechanical properties of monodomain side-chain nematic elastomers" by P. Martinoty, P. Stein, H. Finkelmann, H. Pleiner and H.R. Brand.
    Terentjev EM; Warner M
    Eur Phys J E Soft Matter; 2004 Aug; 14(4):323-7; author reply 329-32. PubMed ID: 15316847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counterion-dependent microrheological properties of F-actin solutions across the isotropic-nematic phase transition.
    He J; Mak M; Liu Y; Tang JX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011908. PubMed ID: 18763983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of monodomain nematic side-chain liquid-crystalline elastomers with homeotropic and in-plane orientation of the director.
    Rogez D; Martinoty P
    Eur Phys J E Soft Matter; 2011 Jul; 34(7):69. PubMed ID: 21755436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid crystalline elastomers: dynamics and relaxation of microstructure.
    Terentjev EM; Hotta A; Clarke SM; Warner M
    Philos Trans A Math Phys Eng Sci; 2003 Apr; 361(1805):653-63; discussion 663-4. PubMed ID: 12871615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic soft elasticity in monodomain nematic elastomers.
    Hotta A; Terentjev EM
    Eur Phys J E Soft Matter; 2003 Apr; 10(4):291-301. PubMed ID: 15156585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gel-like elasticity in glass-forming side-chain liquid-crystal polymers.
    Pozo O; Collin D; Finkelmann H; Rogez D; Martinoty P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031801. PubMed ID: 19905137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cross-linker geometry on dynamic mechanical properties of nematic elastomers.
    Clarke SM; Hotta A; Tajbakhsh AR; Terentjev EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021804. PubMed ID: 11863552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three stage-volume phase transitions of a side-chain liquid crystalline elastomer immersed in nematic solvents.
    Matsuyama A; Kushibe Y
    J Chem Phys; 2010 Mar; 132(10):104903. PubMed ID: 20232986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of crosslinker geometry on equilibrium thermal and mechanical properties of nematic elastomers.
    Clarke SM; Hotta A; Tajbakhsh AR; Terentjev EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 1):061702. PubMed ID: 11736197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Main-chain liquid-crystal elastomers versus side-chain liquid-crystal elastomers: similarities and differences in their mechanical properties.
    Rogez D; Krause S; Martinoty P
    Soft Matter; 2018 Aug; 14(31):6449-6462. PubMed ID: 30035290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling analysis of the viscoelastic response of linear polymers.
    Mohamed F; Flämig M; Hofmann M; Heymann L; Willner L; Fatkullin N; Aksel N; Rössler EA
    J Chem Phys; 2018 Jul; 149(4):044902. PubMed ID: 30068172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of high electric fields on the nematic to isotropic transition in a material exhibiting large negative dielectric anisotropy.
    Dhara S; Madhusudana NV
    Eur Phys J E Soft Matter; 2007 Feb; 22(2):139-49. PubMed ID: 17356801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interplay between viscoelastic and thermodynamic properties determines the birefringence of F-actin gels.
    Helfer E; Panine P; Carlier MF; Davidson P
    Biophys J; 2005 Jul; 89(1):543-53. PubMed ID: 15863487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volume phase transitions of biaxial nematic elastomers.
    Matsuyama A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011707. PubMed ID: 22400583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist.
    Smith BA; Tolloczko B; Martin JG; Grütter P
    Biophys J; 2005 Apr; 88(4):2994-3007. PubMed ID: 15665124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of the orientational order parameter of nematic liquid crystals in thin cells.
    Dhara S; Madhusudana NV
    Eur Phys J E Soft Matter; 2004 Apr; 13(4):401-8. PubMed ID: 15170539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic moduli of magneto-sensitive elastomers: a coarse-grained network model.
    Ivaneyko D; Toshchevikov V; Saphiannikova M
    Soft Matter; 2015 Oct; 11(38):7627-38. PubMed ID: 26294374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.