These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 15338588)
1. The influence of lithium fluoride on in vitro biocompatibility and bioactivity of calcium aluminate-pMMA composite cement. Oh SH; Choi SY; Choi SH; Lee YK; Kim KN J Mater Sci Mater Med; 2004 Jan; 15(1):25-33. PubMed ID: 15338588 [TBL] [Abstract][Full Text] [Related]
2. Effects of lithium fluoride and maleic acid on the bioactivity of calcium aluminate cement: Formation of hydroxyapatite in simulated body fluid. Oh SH; Choi SY; Lee YK; Kim KN; Choi SH J Biomed Mater Res A; 2003 Oct; 67(1):104-11. PubMed ID: 14517867 [TBL] [Abstract][Full Text] [Related]
3. Preparation of calcium aluminate cement for hard tissue repair: effects of lithium fluoride and maleic acid on setting behavior, compressive strength, and biocompatibility. Oh SH; Choi SY; Lee YK; Kim KN J Biomed Mater Res; 2002 Dec; 62(4):593-9. PubMed ID: 12221708 [TBL] [Abstract][Full Text] [Related]
4. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate. Mori A; Ohtsuki C; Miyazaki T; Sugino A; Tanihara M; Kuramoto K; Osaka A J Mater Sci Mater Med; 2005 Aug; 16(8):713-8. PubMed ID: 15965740 [TBL] [Abstract][Full Text] [Related]
6. α-Tricalcium phosphate cements modified with β-dicalcium silicate and tricalcium aluminate: physicochemical characterization, in vitro bioactivity and cytotoxicity. Correa D; Almirall A; Carrodeguas RG; dos Santos LA; De Aza AH; Parra J; Morejón L; Delgado JA J Biomed Mater Res B Appl Biomater; 2015 Jan; 103(1):72-83. PubMed ID: 24764271 [TBL] [Abstract][Full Text] [Related]
7. Development of LiCl-containing calcium aluminate cement for bone repair and remodeling applications. Acuña-Gutiérrez IO; Escobedo-Bocardo JC; Almanza-Robles JM; Cortés-Hernández DA; Saldívar-Ramírez MM; Reséndiz-Hernández PJ; Zugasti-Cruz A Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):357-363. PubMed ID: 27770903 [TBL] [Abstract][Full Text] [Related]
8. Preparation of calcium phosphate cement and polymethyl methacrylate for biological composite bone cements. Yang J; Zhang K; Zhang S; Fan J; Guo X; Dong W; Wang S; Chen Y; Yu B Med Sci Monit; 2015 Apr; 21():1162-72. PubMed ID: 25904398 [TBL] [Abstract][Full Text] [Related]
9. Marginal adaptation and cytotoxicity of bone cement compared with amalgam and mineral trioxide aggregate as root-end filling materials. Badr AE J Endod; 2010 Jun; 36(6):1056-60. PubMed ID: 20478465 [TBL] [Abstract][Full Text] [Related]
10. Bioactive polymethylmethacrylate bone cement modified with combinations of phosphate group-containing monomers and calcium acetate. Liu J; Shirosaki Y; Miyazaki T J Biomater Appl; 2015 Apr; 29(9):1296-303. PubMed ID: 25568169 [TBL] [Abstract][Full Text] [Related]
11. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility. Verné E; Bruno M; Miola M; Maina G; Bianco C; Cochis A; Rimondini L Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():95-103. PubMed ID: 26042695 [TBL] [Abstract][Full Text] [Related]
12. Study of polymethylmethacrylate/tricalcium silicate composite cement for orthopedic application. Wei Y; Baskaran N; Wang HY; Su YC; Nabilla SC; Chung RJ Biomed J; 2023 Jun; 46(3):100540. PubMed ID: 35640805 [TBL] [Abstract][Full Text] [Related]
14. Fluoride-containing nanoporous calcium-silicate MTA cements for endodontics and oral surgery: early fluorapatite formation in a phosphate-containing solution. Gandolfi MG; Taddei P; Siboni F; Modena E; Ginebra MP; Prati C Int Endod J; 2011 Oct; 44(10):938-49. PubMed ID: 21726240 [TBL] [Abstract][Full Text] [Related]
15. Effect of silane treatment and different resin compositions on biological properties of bioactive bone cement containing apatite-wollastonite glass ceramic powder. Mousa WF; Kobayashi M; Kitamura Y; Zeineldin IA; Nakamura T J Biomed Mater Res; 1999 Dec; 47(3):336-44. PubMed ID: 10487884 [TBL] [Abstract][Full Text] [Related]
16. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements. Pahlevanzadeh F; Bakhsheshi-Rad HR; Hamzah E J Mech Behav Biomed Mater; 2018 Jun; 82():257-267. PubMed ID: 29627737 [TBL] [Abstract][Full Text] [Related]
17. Relationship between apatite-forming ability and mechanical properties of bioactive PMMA-based bone cement modified with calcium salts and alkoxysilane. Sugino A; Miyazaki T; Kawachi G; Kikuta K; Ohtsuki C J Mater Sci Mater Med; 2008 Mar; 19(3):1399-405. PubMed ID: 17914619 [TBL] [Abstract][Full Text] [Related]
19. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement. Kim SB; Kim YJ; Yoon TL; Park SA; Cho IH; Kim EJ; Kim IA; Shin JW Biomaterials; 2004 Nov; 25(26):5715-23. PubMed ID: 15147817 [TBL] [Abstract][Full Text] [Related]
20. Preparation of hydroxyapatite/poly(methyl methacrylate) and calcium silicate/poly(methyl methacrylate) interpenetrating hybrid composites. Monvisade P; Siriphannon P; Jermsungnern R; Rattanabodee S J Mater Sci Mater Med; 2007 Oct; 18(10):1955-9. PubMed ID: 17554595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]