BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15338592)

  • 1. Fatigue characterization of a polymer foam to use as a cancellous bone analog material in the assessment of orthopaedic devices.
    Palissery V; Taylor M; Browne M
    J Mater Sci Mater Med; 2004 Jan; 15(1):61-7. PubMed ID: 15338592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties of open-cell foam synthetic thoracic vertebrae.
    Johnson AE; Keller TS
    J Mater Sci Mater Med; 2008 Mar; 19(3):1317-23. PubMed ID: 17882383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The behavior of cancellous bone from quasi-static to dynamic strain rates with emphasis on the intermediate regime.
    Prot M; Cloete TJ; Saletti D; Laporte S
    J Biomech; 2016 May; 49(7):1050-1057. PubMed ID: 26970887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone.
    Patel PS; Shepherd DE; Hukins DW
    BMC Musculoskelet Disord; 2008 Oct; 9():137. PubMed ID: 18844988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the mechanical integrity of the implant-bone interface with BoneWelding technology: determination of quasi-static interfacial strength and fatigue resistance.
    Ferguson SJ; Weber U; von Rechenberg B; Mayer J
    J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):13-20. PubMed ID: 16211571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue characterization of a hydroxyapatite-reinforced polyethylene composite. I. Uniaxial fatigue.
    That PT; Tanner KE; Bonfield W
    J Biomed Mater Res; 2000 Sep; 51(3):453-60. PubMed ID: 10880088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue characterization of a hydroxyapatite-reinforced polyethylene composite. II. Biaxial fatigue.
    Ton That PT; Tanner KE; Bonfield W
    J Biomed Mater Res; 2000 Sep; 51(3):461-8. PubMed ID: 10880089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation into the material properties of beech wood and cortical bone.
    Murdoch AH; Mathias KJ; Shepherd DE
    Biomed Mater Eng; 2004; 14(1):1-4. PubMed ID: 14757947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanical study of potential ceramic implant materials for minimal invasive anterior lumbar interbody fusion].
    Placzek R; Kothe R; Knopf U; Morlock M; Rüther W; Schneider E
    Biomed Tech (Berl); 1999; 44(7-8):206-11. PubMed ID: 10472728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FE and experimental study on how the cortex material properties of synthetic femurs affect strain levels.
    Lopes VMM; Neto MA; Amaro AM; Roseiro LM; Paulino MF
    Med Eng Phys; 2017 Aug; 46():96-109. PubMed ID: 28645848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancellous bone from porous Ti6Al4V by multiple coating technique.
    Li JP; Li SH; Van Blitterswijk CA; de Groot K
    J Mater Sci Mater Med; 2006 Feb; 17(2):179-85. PubMed ID: 16502251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the applicability of bovine morsellized cortico-cancellous bone as a substitute for human morsellized cortico-cancellous bone for in vitro mechanical testing.
    Lunde KB; Foss OA; Skallerud B
    J Biomech; 2008 Dec; 41(16):3469-74. PubMed ID: 18995858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanical response of commercially available bone simulants for quasi-static and dynamic loading.
    Brown AD; Walters JB; Zhang YX; Saadatfar M; Escobedo-Diaz JP; Hazell PJ
    J Mech Behav Biomed Mater; 2019 Feb; 90():404-416. PubMed ID: 30445367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: implication for fatigue microdamage, bone microarchitecture, and biomechanical properties.
    Li ZC; Dai LY; Jiang LS; Qiu S
    Arthritis Rheum; 2012 Dec; 64(12):3955-62. PubMed ID: 23124609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new bioresorbable polymer for screw augmentation in the osteosynthesis of osteoporotic cancellous bone: a biomechanical evaluation.
    Ignatius AA; Augat P; Ohnmacht M; Pokinskyj P; Kock HJ; Claes LE
    J Biomed Mater Res; 2001 May; 58(3):254-60. PubMed ID: 11319738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [On the preparation and mechanical properties of PVA hydrogel bionic cartilage/bone composite artificial articular implants].
    Meng H; Zheng Y; Huang X; Yue B; Xu H; Wang Y; Chen X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):1056-61. PubMed ID: 21089670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone-inspired microarchitectures achieve enhanced fatigue life.
    Torres AM; Trikanad AA; Aubin CA; Lambers FM; Luna M; Rimnac CM; Zavattieri P; Hernandez CJ
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24457-24462. PubMed ID: 31740616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterising the compressive anisotropic properties of analogue bone using optical strain measurement.
    Marter AD; Dickinson AS; Pierron F; Fong YKK; Browne M
    Proc Inst Mech Eng H; 2019 Sep; 233(9):954-960. PubMed ID: 31210622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.