These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 15338592)
1. Fatigue characterization of a polymer foam to use as a cancellous bone analog material in the assessment of orthopaedic devices. Palissery V; Taylor M; Browne M J Mater Sci Mater Med; 2004 Jan; 15(1):61-7. PubMed ID: 15338592 [TBL] [Abstract][Full Text] [Related]
2. Mechanical properties of open-cell foam synthetic thoracic vertebrae. Johnson AE; Keller TS J Mater Sci Mater Med; 2008 Mar; 19(3):1317-23. PubMed ID: 17882383 [TBL] [Abstract][Full Text] [Related]
3. The behavior of cancellous bone from quasi-static to dynamic strain rates with emphasis on the intermediate regime. Prot M; Cloete TJ; Saletti D; Laporte S J Biomech; 2016 May; 49(7):1050-1057. PubMed ID: 26970887 [TBL] [Abstract][Full Text] [Related]
4. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces. Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609 [TBL] [Abstract][Full Text] [Related]
5. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone. Patel PS; Shepherd DE; Hukins DW BMC Musculoskelet Disord; 2008 Oct; 9():137. PubMed ID: 18844988 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the mechanical integrity of the implant-bone interface with BoneWelding technology: determination of quasi-static interfacial strength and fatigue resistance. Ferguson SJ; Weber U; von Rechenberg B; Mayer J J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):13-20. PubMed ID: 16211571 [TBL] [Abstract][Full Text] [Related]
7. Fatigue characterization of a hydroxyapatite-reinforced polyethylene composite. I. Uniaxial fatigue. That PT; Tanner KE; Bonfield W J Biomed Mater Res; 2000 Sep; 51(3):453-60. PubMed ID: 10880088 [TBL] [Abstract][Full Text] [Related]
8. Fatigue characterization of a hydroxyapatite-reinforced polyethylene composite. II. Biaxial fatigue. Ton That PT; Tanner KE; Bonfield W J Biomed Mater Res; 2000 Sep; 51(3):461-8. PubMed ID: 10880089 [TBL] [Abstract][Full Text] [Related]
9. Investigation into the material properties of beech wood and cortical bone. Murdoch AH; Mathias KJ; Shepherd DE Biomed Mater Eng; 2004; 14(1):1-4. PubMed ID: 14757947 [TBL] [Abstract][Full Text] [Related]
10. [Mechanical study of potential ceramic implant materials for minimal invasive anterior lumbar interbody fusion]. Placzek R; Kothe R; Knopf U; Morlock M; Rüther W; Schneider E Biomed Tech (Berl); 1999; 44(7-8):206-11. PubMed ID: 10472728 [TBL] [Abstract][Full Text] [Related]
11. FE and experimental study on how the cortex material properties of synthetic femurs affect strain levels. Lopes VMM; Neto MA; Amaro AM; Roseiro LM; Paulino MF Med Eng Phys; 2017 Aug; 46():96-109. PubMed ID: 28645848 [TBL] [Abstract][Full Text] [Related]
12. Cancellous bone from porous Ti6Al4V by multiple coating technique. Li JP; Li SH; Van Blitterswijk CA; de Groot K J Mater Sci Mater Med; 2006 Feb; 17(2):179-85. PubMed ID: 16502251 [TBL] [Abstract][Full Text] [Related]
13. On the applicability of bovine morsellized cortico-cancellous bone as a substitute for human morsellized cortico-cancellous bone for in vitro mechanical testing. Lunde KB; Foss OA; Skallerud B J Biomech; 2008 Dec; 41(16):3469-74. PubMed ID: 18995858 [TBL] [Abstract][Full Text] [Related]
14. The mechanical response of commercially available bone simulants for quasi-static and dynamic loading. Brown AD; Walters JB; Zhang YX; Saadatfar M; Escobedo-Diaz JP; Hazell PJ J Mech Behav Biomed Mater; 2019 Feb; 90():404-416. PubMed ID: 30445367 [TBL] [Abstract][Full Text] [Related]
15. Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: implication for fatigue microdamage, bone microarchitecture, and biomechanical properties. Li ZC; Dai LY; Jiang LS; Qiu S Arthritis Rheum; 2012 Dec; 64(12):3955-62. PubMed ID: 23124609 [TBL] [Abstract][Full Text] [Related]
16. A new bioresorbable polymer for screw augmentation in the osteosynthesis of osteoporotic cancellous bone: a biomechanical evaluation. Ignatius AA; Augat P; Ohnmacht M; Pokinskyj P; Kock HJ; Claes LE J Biomed Mater Res; 2001 May; 58(3):254-60. PubMed ID: 11319738 [TBL] [Abstract][Full Text] [Related]
17. [On the preparation and mechanical properties of PVA hydrogel bionic cartilage/bone composite artificial articular implants]. Meng H; Zheng Y; Huang X; Yue B; Xu H; Wang Y; Chen X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):1056-61. PubMed ID: 21089670 [TBL] [Abstract][Full Text] [Related]
18. Bone-inspired microarchitectures achieve enhanced fatigue life. Torres AM; Trikanad AA; Aubin CA; Lambers FM; Luna M; Rimnac CM; Zavattieri P; Hernandez CJ Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24457-24462. PubMed ID: 31740616 [TBL] [Abstract][Full Text] [Related]
19. Characterising the compressive anisotropic properties of analogue bone using optical strain measurement. Marter AD; Dickinson AS; Pierron F; Fong YKK; Browne M Proc Inst Mech Eng H; 2019 Sep; 233(9):954-960. PubMed ID: 31210622 [TBL] [Abstract][Full Text] [Related]
20. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty. Robo C; Öhman-Mägi C; Persson C J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]