BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 1533860)

  • 1. A myoelectrically based dynamic three-dimensional model to predict loads on lumbar spine tissues during lateral bending.
    McGill SM
    J Biomech; 1992 Apr; 25(4):395-414. PubMed ID: 1533860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting.
    McGill SM; Norman RW
    Spine (Phila Pa 1976); 1986 Sep; 11(7):666-78. PubMed ID: 3787338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine.
    Mörl F; Günther M; Riede JM; Hammer M; Schmitt S
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2015-2047. PubMed ID: 32314072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trunk muscle and lumbar ligament contributions to dynamic lifts with varying degrees of trunk flexion.
    Potvin JR; McGill SM; Norman RW
    Spine (Phila Pa 1976); 1991 Sep; 16(9):1099-107. PubMed ID: 1948399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bending and compressive stresses acting on the lumbar spine during lifting activities.
    Dolan P; Earley M; Adams MA
    J Biomech; 1994 Oct; 27(10):1237-48. PubMed ID: 7962011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces.
    Han KS; Zander T; Taylor WR; Rohlmann A
    Med Eng Phys; 2012 Jul; 34(6):709-16. PubMed ID: 21978915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach.
    Cholewicki J; McGill SM; Norman RW
    J Biomech; 1995 Mar; 28(3):321-31. PubMed ID: 7730390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination.
    Arshad R; Zander T; Bashkuev M; Schmidt H
    Med Eng Phys; 2017 Aug; 46():54-62. PubMed ID: 28666589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repetitive lifting tasks fatigue the back muscles and increase the bending moment acting on the lumbar spine.
    Dolan P; Adams MA
    J Biomech; 1998 Aug; 31(8):713-21. PubMed ID: 9796671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities.
    Dolan P; Adams MA
    J Biomech; 1993; 26(4-5):513-22. PubMed ID: 8478353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An EMG-assisted model of trunk loading during free-dynamic lifting.
    Granata KP; Marras WS
    J Biomech; 1995 Nov; 28(11):1309-17. PubMed ID: 8522544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lumbar posterior ligament involvement during extremely heavy lifts estimated from fluoroscopic measurements.
    Cholewicki J; McGill SM
    J Biomech; 1992 Jan; 25(1):17-28. PubMed ID: 1733981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of lumbo-pelvic rhythm on trunk muscle forces and disc loads during forward flexion: A combined musculoskeletal and finite element simulation study.
    Liu T; Khalaf K; Adeeb S; El-Rich M
    J Biomech; 2019 Jan; 82():116-123. PubMed ID: 30389260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation.
    Ezquerro F; Simón A; Prado M; Pérez A
    Med Eng Phys; 2004 Jan; 26(1):11-22. PubMed ID: 14644594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a role of antagonistic cocontraction in controlling trunk stiffness during lifting.
    van Dieën JH; Kingma I; van der Bug P
    J Biomech; 2003 Dec; 36(12):1829-36. PubMed ID: 14614936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Midlumbar lateral flexion stability measured in healthy volunteers by in vivo fluoroscopy.
    Mellor FE; Muggleton JM; Bagust J; Mason W; Thomas PW; Breen AC
    Spine (Phila Pa 1976); 2009 Oct; 34(22):E811-7. PubMed ID: 19829245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG
    Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of dynamic myoelectric signal-to-force models during isometric lumbar muscle contractions.
    Thelen DG; Schultz AB; Fassois SD; Ashton-Miller JA
    J Biomech; 1994 Jul; 27(7):907-19. PubMed ID: 8063841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Cervico-Thoraco-Lumbar Multibody Dynamic Model for the Estimation of Joint Loads and Muscle Forces.
    Khurelbaatar T; Kim K; Hyuk Kim Y
    J Biomech Eng; 2015 Nov; 137(11):111001. PubMed ID: 26292160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.