These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15338612)

  • 1. Sequence organization and functional annotation of human centromeres.
    Rudd MK; Schueler MG; Willard HF
    Cold Spring Harb Symp Quant Biol; 2003; 68():141-9. PubMed ID: 15338612
    [No Abstract]   [Full Text] [Related]  

  • 2. The unique kind of human artificial chromosome: Bypassing the requirement for repetitive centromere DNA.
    Gambogi CW; Dawicki-McKenna JM; Logsdon GA; Black BE
    Exp Cell Res; 2020 Jun; 391(2):111978. PubMed ID: 32246994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human artificial chromosome assembly by transposon-based retrofitting of genomic BACs with synthetic alpha-satellite arrays.
    Basu J; Willard HF; Stromberg G
    Curr Protoc Hum Genet; 2007 Jan; Chapter 5():Unit 5.18. PubMed ID: 18428412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolutionary dynamics of alpha-satellite.
    Rudd MK; Wray GA; Willard HF
    Genome Res; 2006 Jan; 16(1):88-96. PubMed ID: 16344556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human artificial chromosomes containing chromosome 17 alphoid DNA maintain an active centromere in murine cells but are not stable.
    Alazami AM; Mejía JE; Monaco ZL
    Genomics; 2004 May; 83(5):844-51. PubMed ID: 15081114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clusters of alpha satellite on human chromosome 21 are dispersed far onto the short arm and lack ancient layers.
    Ziccardi W; Zhao C; Shepelev V; Uralsky L; Alexandrov I; Andreeva T; Rogaev E; Bun C; Miller E; Putonti C; Doering J
    Chromosome Res; 2016 Sep; 24(3):421-36. PubMed ID: 27430641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Closing in on a complete human genome.
    Eisenstein M
    Nature; 2021 Feb; 590(7847):679-681. PubMed ID: 33619406
    [No Abstract]   [Full Text] [Related]  

  • 8. Genomic and genetic definition of a functional human centromere.
    Schueler MG; Higgins AW; Rudd MK; Gustashaw K; Willard HF
    Science; 2001 Oct; 294(5540):109-15. PubMed ID: 11588252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Informative genetic polymorphic markers within the centromeric regions of human chromosomes 17 (D17S2205) and 11 (D11S4975).
    Laurent AM; Puechberty J; Prades C; Roizès G
    Genomics; 1998 Sep; 52(2):166-72. PubMed ID: 9782082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A satellite-like sequence, representing a "clone gap" in the human genome, was likely involved in the seeding of a novel centromere in macaque.
    Carbone L; D'addabbo P; Cardone MF; Teti MG; Misceo D; Vessere GM; de Jong PJ; Rocchi M
    Chromosoma; 2009 Apr; 118(2):269-77. PubMed ID: 19048265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres.
    Masumoto H; Nakano M; Ohzeki J
    Chromosome Res; 2004; 12(6):543-56. PubMed ID: 15289662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA.
    Lam AL; Boivin CD; Bonney CF; Rudd MK; Sullivan BA
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4186-91. PubMed ID: 16537506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag.
    Rudd MK; Mays RW; Schwartz S; Willard HF
    Mol Cell Biol; 2003 Nov; 23(21):7689-97. PubMed ID: 14560014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles.
    Aldrup-MacDonald ME; Kuo ME; Sullivan LL; Chew K; Sullivan BA
    Genome Res; 2016 Oct; 26(10):1301-1311. PubMed ID: 27510565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and epigenetic regulation of centromeres: a look at HAC formation.
    Ohzeki J; Larionov V; Earnshaw WC; Masumoto H
    Chromosome Res; 2015 Feb; 23(1):87-103. PubMed ID: 25682171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid creation of BAC-based human artificial chromosome vectors by transposition with synthetic alpha-satellite arrays.
    Basu J; Stromberg G; Compitello G; Willard HF; Van Bokkelen G
    Nucleic Acids Res; 2005; 33(2):587-96. PubMed ID: 15673719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomics and gene therapy. Artificial chromosomes coming to life.
    Willard HF
    Science; 2000 Nov; 290(5495):1308-9. PubMed ID: 11185406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes.
    Grimes BR; Babcock J; Rudd MK; Chadwick B; Willard HF
    Genome Biol; 2004; 5(11):R89. PubMed ID: 15535865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation.
    Grimes BR; Rhoades AA; Willard HF
    Mol Ther; 2002 Jun; 5(6):798-805. PubMed ID: 12027565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human artificial chromosome: Chromatin assembly mechanisms and CENP-B.
    Ohzeki JI; Otake K; Masumoto H
    Exp Cell Res; 2020 Apr; 389(2):111900. PubMed ID: 32044309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.