These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Energetics of ion transport in a peptide nanotube. Dehez F; Tarek M; Chipot C J Phys Chem B; 2007 Sep; 111(36):10633-5. PubMed ID: 17705530 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of ion permeation in a model channel: Free energy surface and dynamics of K+ ion transport in an anion-doped carbon nanotube. Sumikama T; Saito S; Ohmine I J Phys Chem B; 2006 Oct; 110(41):20671-7. PubMed ID: 17034258 [TBL] [Abstract][Full Text] [Related]
7. Molecular sieving and sensing with gold nanotube membranes. Wirtz M; Parker M; Kobayashi Y; Martin CR Chem Rec; 2002; 2(4):259-67. PubMed ID: 12203908 [TBL] [Abstract][Full Text] [Related]
9. Modeling membranes under a transmembrane potential. Delemotte L; Dehez F; Treptow W; Tarek M J Phys Chem B; 2008 May; 112(18):5547-50. PubMed ID: 18412411 [TBL] [Abstract][Full Text] [Related]
10. Intrinsic ion selectivity of narrow hydrophobic pores. Song C; Corry B J Phys Chem B; 2009 May; 113(21):7642-9. PubMed ID: 19419185 [TBL] [Abstract][Full Text] [Related]
11. Ion permeation dynamics in carbon nanotubes. Liu H; Murad S; Jameson CJ J Chem Phys; 2006 Aug; 125(8):084713. PubMed ID: 16965045 [TBL] [Abstract][Full Text] [Related]
12. Template-synthesized nanotubes for chemical separations and analysis. Wirtz M; Parker M; Kobayashi Y; Martin CR Chemistry; 2002 Aug; 8(16):3572-8. PubMed ID: 12203283 [TBL] [Abstract][Full Text] [Related]
13. Theoretical description of the ion transport across nanopores with titratable fixed charges: analogies between ion channels and synthetic pores. Ramírez P; Aguilella-Arzo M; Alcaraz A; Cervera J; Aguilella VM Cell Biochem Biophys; 2006; 44(2):287-312. PubMed ID: 16456229 [TBL] [Abstract][Full Text] [Related]
14. Synthetic cation-selective nanotube: permeant cations chaperoned by anions. Hilder TA; Gordon D; Chung SH J Chem Phys; 2011 Jan; 134(4):045103. PubMed ID: 21280804 [TBL] [Abstract][Full Text] [Related]
15. Ion hydration in nanopores and the molecular basis of selectivity. Carrillo-Tripp M; San-Román ML; Hernańdez-Cobos J; Saint-Martin H; Ortega-Blake I Biophys Chem; 2006 Dec; 124(3):243-50. PubMed ID: 16765508 [TBL] [Abstract][Full Text] [Related]
16. Biosensing with conically shaped nanopores and nanotubes. Choi Y; Baker LA; Hillebrenner H; Martin CR Phys Chem Chem Phys; 2006 Nov; 8(43):4976-88. PubMed ID: 17091150 [TBL] [Abstract][Full Text] [Related]
17. Ion homeostasis, channels, and transporters: an update on cellular mechanisms. Dubyak GR Adv Physiol Educ; 2004 Dec; 28(1-4):143-54. PubMed ID: 15545343 [TBL] [Abstract][Full Text] [Related]
18. Pore formation by 6-ketocholestanol in phospholipid monolayers and its interpretation by a general nucleation-and-growth model accounting for the sigmoidal shape of voltage-clamp curves of ion channels. Becucci L; Moncelli MR; Guidelli R J Am Chem Soc; 2003 Apr; 125(13):3784-92. PubMed ID: 12656611 [TBL] [Abstract][Full Text] [Related]
19. Current recordings of ion channel proteins immobilized on resin beads. Hirano M; Takeuchi Y; Aoki T; Yanagida T; Ide T Anal Chem; 2009 Apr; 81(8):3151-4. PubMed ID: 19296686 [TBL] [Abstract][Full Text] [Related]
20. How the asymmetry of internal potential influences the shape of I-V characteristic of nanochannels. Kosińska ID J Chem Phys; 2006 Jun; 124(24):244707. PubMed ID: 16821996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]