These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15339169)

  • 1. Highly diastereoselective and enantioselective C-H functionalization of 1,2-dihydronaphthalenes: a combined C-H activation/Cope rearrangement followed by a retro-Cope rearrangement.
    Davies HM; Jin Q
    J Am Chem Soc; 2004 Sep; 126(35):10862-3. PubMed ID: 15339169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective double C-H activation of dihydronaphthalenes.
    Davies HM; Jin Q
    Org Lett; 2005 Jun; 7(12):2293-6. PubMed ID: 15932181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic asymmetric reactions for organic synthesis: the combined C-H activation/siloxy-cope rearrangement.
    Davies HM; Beckwith RE
    J Org Chem; 2004 Dec; 69(26):9241-7. PubMed ID: 15609962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric intermolecular C-H functionalization of benzyl silyl ethers mediated by chiral auxiliary-based aryldiazoacetates and chiral dirhodium catalysts.
    Davies HM; Hedley SJ; Bohall BR
    J Org Chem; 2005 Dec; 70(26):10737-42. PubMed ID: 16355994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-H activation as a strategic reaction: enantioselective synthesis of 4-substituted indoles.
    Davies HM; Manning JR
    J Am Chem Soc; 2006 Feb; 128(4):1060-1. PubMed ID: 16433506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling factors for C-H functionalization versus cyclopropanation of dihydronaphthalenes.
    Nadeau E; Ventura DL; Brekan JA; Davies HM
    J Org Chem; 2010 Mar; 75(6):1927-39. PubMed ID: 20170115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism and selectivity of the combined C-H activation/Cope rearrangement.
    Hansen JH; Gregg TM; Ovalles SR; Lian Y; Autschbach J; Davies HM
    J Am Chem Soc; 2011 Apr; 133(13):5076-85. PubMed ID: 21384883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective C-C bond formation by rhodium-catalyzed tandem ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and allylic alcohols.
    Li Z; Davies HM
    J Am Chem Soc; 2010 Jan; 132(1):396-401. PubMed ID: 19994854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined C-H activation/cope rearrangement as a strategic reaction in organic synthesis: total synthesis of (-)-colombiasin a and (-)-elisapterosin B.
    Davies HM; Dai X; Long MS
    J Am Chem Soc; 2006 Feb; 128(7):2485-90. PubMed ID: 16478205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palladium-catalyzed allylic transposition of (allyloxy) iminodiazaphospholidines: a formal [3,3]-aza-phospha-oxa-Cope sigmatropic rearrangement for the stereoselective synthesis of allylic amines.
    Lee EE; Batey RA
    J Am Chem Soc; 2005 Oct; 127(42):14887-93. PubMed ID: 16231944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic asymmetric reactions for organic synthesis: the combined C-H activation/Cope rearrangement.
    Davies HM; Jin Q
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5472-5. PubMed ID: 15024094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The combined C-H functionalization/Cope rearrangement: discovery and applications in organic synthesis.
    Davies HM; Lian Y
    Acc Chem Res; 2012 Jun; 45(6):923-35. PubMed ID: 22577963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preorganization in highly enantioselective diaza-Cope rearrangement reaction.
    Kim HJ; Kim H; Alhakimi G; Jeong EJ; Thavarajah N; Studnicki L; Koprianiuk A; Lough AJ; Suh J; Chin J
    J Am Chem Soc; 2005 Nov; 127(47):16370-1. PubMed ID: 16305204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diastereoselective remote C-H activation by hydroboration.
    Varela JA; Peña D; Goldfuss B; Denisenko D; Kulhanek J; Polborn K; Knochel P
    Chemistry; 2004 Sep; 10(17):4252-64. PubMed ID: 15352108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective reactions of donor/acceptor carbenoids derived from alpha-aryl-alpha-diazoketones.
    Denton JR; Davies HM
    Org Lett; 2009 Feb; 11(4):787-90. PubMed ID: 19146454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly diastereoselective addition of the lithium enolate of alpha-diazoacetoacetate to N-sulfinyl imines: enantioselective synthesis of 2-oxo and 3-oxo pyrrolidines.
    Dong C; Mo F; Wang J
    J Org Chem; 2008 Mar; 73(5):1971-4. PubMed ID: 18266383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DFT study on the mechanism of Rh2(II,II)-catalyzed intramolecular amidation of carbamates.
    Lin X; Zhao C; Che CM; Ke Z; Phillips DL
    Chem Asian J; 2007 Sep; 2(9):1101-8. PubMed ID: 17712831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly enantioselective Rh2(S-DOSP)4-catalyzed cyclopropenation of alkynes with styryldiazoacetates.
    Briones JF; Hansen J; Hardcastle KI; Autschbach J; Davies HM
    J Am Chem Soc; 2010 Dec; 132(48):17211-5. PubMed ID: 21080670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic asymmetric allylic C-H activation as a surrogate of the asymmetric Claisen rearrangement.
    Davies HM; Ren P; Jin Q
    Org Lett; 2001 Nov; 3(22):3587-90. PubMed ID: 11678715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective catalysis of the aza-Cope rearrangement by a chiral supramolecular assembly.
    Brown CJ; Bergman RG; Raymond KN
    J Am Chem Soc; 2009 Dec; 131(48):17530-1. PubMed ID: 19950985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.