These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15339341)

  • 41. Retinocollicular mapping explained?
    Sterratt DC; Hjorth JJJ
    Vis Neurosci; 2013 Jul; 30(4):125-8. PubMed ID: 23968139
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of single retinofugal axon arbors in normal and β2 knock-out mice.
    Dhande OS; Hua EW; Guh E; Yeh J; Bhatt S; Zhang Y; Ruthazer ES; Feller MB; Crair MC
    J Neurosci; 2011 Mar; 31(9):3384-99. PubMed ID: 21368050
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of mouse EphA knockins and knockouts suggests that retinal axons programme target cells to form ordered retinotopic maps.
    Willshaw D
    Development; 2006 Jul; 133(14):2705-17. PubMed ID: 16774998
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ephrin-As are required for the topographic mapping but not laminar choice of physiologically distinct RGC types.
    Sweeney NT; James KN; Sales EC; Feldheim DA
    Dev Neurobiol; 2015 Jun; 75(6):584-93. PubMed ID: 25649160
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Target-independent ephrina/EphA-mediated axon-axon repulsion as a novel element in retinocollicular mapping.
    Suetterlin P; Drescher U
    Neuron; 2014 Nov; 84(4):740-52. PubMed ID: 25451192
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Topographic organization in the retinocollicular pathway of the fetal cat demonstrated by retrograde labeling of ganglion cells.
    Chalupa LM; Snider CJ; Kirby MA
    J Comp Neurol; 1996 Apr; 368(2):295-303. PubMed ID: 8725308
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression patterns of Ephs and ephrins throughout retinotectal development in Xenopus laevis.
    Higenell V; Han SM; Feldheim DA; Scalia F; Ruthazer ES
    Dev Neurobiol; 2012 Apr; 72(4):547-63. PubMed ID: 21656698
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping.
    Feldheim DA; Kim YI; Bergemann AD; Frisén J; Barbacid M; Flanagan JG
    Neuron; 2000 Mar; 25(3):563-74. PubMed ID: 10774725
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phr1 is required for proper retinocollicular targeting of nasal-dorsal retinal ganglion cells.
    Vo BQ; Bloom AJ; Culican SM
    Vis Neurosci; 2011 Mar; 28(2):175-81. PubMed ID: 21324225
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Key roles of Ephs and ephrins in retinotectal topographic map formation.
    Scicolone G; Ortalli AL; Carri NG
    Brain Res Bull; 2009 Jun; 79(5):227-47. PubMed ID: 19480983
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A relative signalling model for the formation of a topographic neural map.
    Reber M; Burrola P; Lemke G
    Nature; 2004 Oct; 431(7010):847-53. PubMed ID: 15483613
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pax7 and superior collicular polarity: insights from Pax6 (Sey) mutant mice.
    Thompson JA; Lovicu FJ; Ziman M
    Exp Brain Res; 2007 Apr; 178(3):316-25. PubMed ID: 17091300
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ten-m3 is required for the development of topography in the ipsilateral retinocollicular pathway.
    Dharmaratne N; Glendining KA; Young TR; Tran H; Sawatari A; Leamey CA
    PLoS One; 2012; 7(9):e43083. PubMed ID: 23028443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ephrin-A2 and -A5 influence patterning of normal and novel retinal projections to the thalamus: conserved mapping mechanisms in visual and auditory thalamic targets.
    Ellsworth CA; Lyckman AW; Feldheim DA; Flanagan JG; Sur M
    J Comp Neurol; 2005 Jul; 488(2):140-51. PubMed ID: 15924339
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computational modeling of retinotopic map development to define contributions of EphA-ephrinA gradients, axon-axon interactions, and patterned activity.
    Yates PA; Holub AD; McLaughlin T; Sejnowski TJ; O'Leary DD
    J Neurobiol; 2004 Apr; 59(1):95-113. PubMed ID: 15007830
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of position along the medial-lateral axis of the superior colliculus on the topographic targeting and survival of retinal axons.
    Simon DK; O'Leary DD
    Brain Res Dev Brain Res; 1992 Oct; 69(2):167-72. PubMed ID: 1385014
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Limited topographic specificity in the targeting and branching of mammalian retinal axons.
    Simon DK; O'Leary DD
    Dev Biol; 1990 Jan; 137(1):125-34. PubMed ID: 1688537
    [TBL] [Abstract][Full Text] [Related]  

  • 58. L1 interaction with ankyrin regulates mediolateral topography in the retinocollicular projection.
    Buhusi M; Schlatter MC; Demyanenko GP; Thresher R; Maness PF
    J Neurosci; 2008 Jan; 28(1):177-88. PubMed ID: 18171935
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Retroviral misexpression of cVax disturbs retinal ganglion cell axon fasciculation and intraretinal pathfinding in vivo and guidance of nasal ganglion cell axons in vivo.
    Mühleisen TW; Agoston Z; Schulte D
    Dev Biol; 2006 Sep; 297(1):59-73. PubMed ID: 16769047
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuron glia-related cell adhesion molecule (NrCAM) promotes topographic retinocollicular mapping.
    Dai J; Buhusi M; Demyanenko GP; Brennaman LH; Hruska M; Dalva MB; Maness PF
    PLoS One; 2013; 8(9):e73000. PubMed ID: 24023801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.