BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 15339738)

  • 1. Radial profiles of sap flow with increasing tree size in maritime pine.
    Delzon S; Sartore M; Granier A; Loustau D
    Tree Physiol; 2004 Nov; 24(11):1285-93. PubMed ID: 15339738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use.
    Ford CR; McGuire MA; Mitchell RJ; Teskey RO
    Tree Physiol; 2004 Mar; 24(3):241-9. PubMed ID: 14704134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.
    James SA; Clearwater MJ; Meinzer FC; Goldstein G
    Tree Physiol; 2002 Mar; 22(4):277-83. PubMed ID: 11874724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees.
    Ford CR; Goranson CE; Mitchell RJ; Will RE; Teskey RO
    Tree Physiol; 2004 Sep; 24(9):941-50. PubMed ID: 15234892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors.
    Nadezhdina N; Cermák J; Ceulemans R
    Tree Physiol; 2002 Sep; 22(13):907-18. PubMed ID: 12204847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model.
    Perämäki M; Nikinmaa E; Sevanto S; Ilvesniemi H; Siivola E; Hari P; Vesala T
    Tree Physiol; 2001 Aug; 21(12-13):889-97. PubMed ID: 11498336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest.
    Shinohara Y; Tsuruta K; Ogura A; Noto F; Komatsu H; Otsuki K; Maruyama T
    Tree Physiol; 2013 May; 33(5):550-8. PubMed ID: 23640874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stem sapwood permeability in relation to crown dominance and site quality in self-thinning fire-origin lodgepole pine stands.
    Reid DE; Silins U; Lieffers VJ
    Tree Physiol; 2003 Aug; 23(12):833-40. PubMed ID: 12865249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.
    Moore GW; Bond BJ; Jones JA; Phillips N; Meinzer FC
    Tree Physiol; 2004 May; 24(5):481-91. PubMed ID: 14996653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD; Childs KW; King AW; Hanson PJ
    Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements.
    Poyatos R; Cermák J; Llorens P
    Tree Physiol; 2007 Apr; 27(4):537-48. PubMed ID: 17241996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees.
    Meinzer FC; James SA; Goldstein G
    Tree Physiol; 2004 Aug; 24(8):901-9. PubMed ID: 15172840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medium-term sap flux monitoring in a Scots pine stand: analysis of the operability of the heat dissipation method for hydrological purposes.
    Oliveras I; Llorens P
    Tree Physiol; 2001 May; 21(7):473-80. PubMed ID: 11340048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed.
    Kumagai T; Aoki S; Shimizu T; Otsuki K
    Tree Physiol; 2007 Feb; 27(2):161-8. PubMed ID: 17241959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radial variations in xylem sap flux in a temperate red pine plantation forest.
    Bodo AV; Arain MA
    Ecol Process; 2021; 10(1):24. PubMed ID: 34722105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial and radial water transport and internal water storage in tropical forest canopy trees.
    James SA; Meinzer FC; Goldstein G; Woodruff D; Jones T; Restom T; Mejia M; Clearwater M; Campanello P
    Oecologia; 2003 Jan; 134(1):37-45. PubMed ID: 12647177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees.
    Cermák J; Kucera J; Bauerle WL; Phillips N; Hinckley TM
    Tree Physiol; 2007 Feb; 27(2):181-98. PubMed ID: 17241961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diurnal and seasonal variability in radial distribution of sap flux density: Implications for estimating stand transpiration.
    Fiora A; Cescatti A
    Tree Physiol; 2006 Sep; 26(9):1217-25. PubMed ID: 16740497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.
    Simonin K; Kolb TE; Montes-Helu M; Koch GW
    Tree Physiol; 2006 Apr; 26(4):493-503. PubMed ID: 16414928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.
    Pausch RC; Grote EE; Dawson TE
    Tree Physiol; 2000 Mar; 20(4):217-227. PubMed ID: 12651458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.