BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 15339738)

  • 21. [Characteristics of dominant tree species stem sap flow and their relationships with environmental factors in a mixed conifer-broadleaf forest in Dinghushan, Guangdong Province of South China].
    Huang DW; Zhang DQ; Zhou GY; Liu SZ; Otieno D; Li YL
    Ying Yong Sheng Tai Xue Bao; 2012 May; 23(5):1159-66. PubMed ID: 22919822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Canopy stomatal conductance and xylem sap abscisic acid (ABA) in mature Scots pine during a gradually imposed drought.
    Perks MP; Irvine J; Grace J
    Tree Physiol; 2002 Aug; 22(12):877-83. PubMed ID: 12184977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters.
    Sperling O; Shapira O; Cohen S; Tripler E; Schwartz A; Lazarovitch N
    Tree Physiol; 2012 Sep; 32(9):1171-8. PubMed ID: 22887479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.
    Gebauer T; Horna V; Leuschner C
    Tree Physiol; 2008 Dec; 28(12):1821-30. PubMed ID: 19193565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine.
    Hubbard RM; Bond BJ; Senock RS; Ryan MG
    Tree Physiol; 2002 Jun; 22(8):575-81. PubMed ID: 12045029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water relations in tree physiology: where to from here?
    Landsberg J; Waring R; Ryan M
    Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance.
    Duursma RA; Kolari P; Perämäki M; Nikinmaa E; Hari P; Delzon S; Loustau D; Ilvesniemi H; Pumpanen J; Mäkelä A
    Tree Physiol; 2008 Feb; 28(2):265-76. PubMed ID: 18055437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.
    Wullschleger SD; King AW
    Tree Physiol; 2000 Apr; 20(8):511-518. PubMed ID: 12651431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees.
    Berdanier AB; Miniat CF; Clark JS
    Tree Physiol; 2016 Aug; 36(8):932-41. PubMed ID: 27126230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.
    Angstmann JL; Ewers BE; Kwon H
    Tree Physiol; 2012 May; 32(5):599-611. PubMed ID: 22539635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.
    Köstner B; Falge E; Tenhunen JD
    Tree Physiol; 2002 Jun; 22(8):567-74. PubMed ID: 12045028
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth response and sapwood hydraulic properties of young lodgepole pine following repeated fertilization.
    Amponsah IG; Lieffers VJ; Comeau PG; Brockley RP
    Tree Physiol; 2004 Oct; 24(10):1099-108. PubMed ID: 15294756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variability with xylem depth in sap flow in trunks and branches of mature olive trees.
    Nadezhdina N; Nadezhdin V; Ferreira MI; Pitacco A
    Tree Physiol; 2007 Jan; 27(1):105-13. PubMed ID: 17169912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Why size matters: the interactive influences of tree diameter distribution and sap flow parameters on upscaled transpiration.
    Berry ZC; Looker N; Holwerda F; Gómez Aguilar LR; Ortiz Colin P; González Martínez T; Asbjornsen H
    Tree Physiol; 2018 Feb; 38(2):263-275. PubMed ID: 29040787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests.
    Brooks JR; Meinzer FC; Coulombe R; Gregg J
    Tree Physiol; 2002 Nov; 22(15-16):1107-17. PubMed ID: 12414370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anatomical explanations for acute depressions in radial pattern of axial sap flow in two diffuse-porous mangrove species: implications for water use.
    Zhao H; Yang S; Guo X; Peng C; Gu X; Deng C; Chen L
    Tree Physiol; 2018 Feb; 38(2):276-286. PubMed ID: 29346677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transient thermal dissipation method for xylem sap flow measurement: implementation with a single probe.
    Do FC; Isarangkool Na Ayutthaya S; Rocheteau A
    Tree Physiol; 2011 Apr; 31(4):369-80. PubMed ID: 21498407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water use by whitebark pine and subalpine fir: potential consequences of fire exclusion in the northern Rocky Mountains.
    Sala A; Carey EV; Keane RE; Callaway RM
    Tree Physiol; 2001 Jul; 21(11):717-25. PubMed ID: 11470657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transpiration of urban forests in the Los Angeles metropolitan area.
    Pataki DE; McCarthy HR; Litvak E; Pincetl S
    Ecol Appl; 2011 Apr; 21(3):661-77. PubMed ID: 21639035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reliance on stored water increases with tree size in three species in the Pacific Northwest.
    Phillips NG; Ryan MG; Bond BJ; McDowell NG; Hinckley TM; Cermák J
    Tree Physiol; 2003 Mar; 23(4):237-45. PubMed ID: 12566259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.