BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 15340147)

  • 1. O2 activation by binuclear Cu sites: noncoupled versus exchange coupled reaction mechanisms.
    Chen P; Solomon EI
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13105-10. PubMed ID: 15340147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site.
    Chen P; Solomon EI
    J Am Chem Soc; 2004 Apr; 126(15):4991-5000. PubMed ID: 15080705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Spectroscopic definition of the resting sites and the putative CuIIM-OOH intermediate.
    Chen P; Bell J; Eipper BA; Solomon EI
    Biochemistry; 2004 May; 43(19):5735-47. PubMed ID: 15134448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O2 and N2O activation by Bi-, Tri-, and tetranuclear Cu clusters in biology.
    Solomon EI; Sarangi R; Woertink JS; Augustine AJ; Yoon J; Ghosh S
    Acc Chem Res; 2007 Jul; 40(7):581-91. PubMed ID: 17472331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the thermodynamics of O[bond]O cleavage for dicopper complexes in enzymes and synthetic systems.
    Siegbahn PEM
    J Biol Inorg Chem; 2003 May; 8(5):577-585. PubMed ID: 12764603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: evidence for a dinuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin.
    Rompel A; Fischer H; Meiwes D; Büldt-Karentzopoulos K; Dillinger R; Tuczek F; Witzel H; Krebs B
    J Biol Inorg Chem; 1999 Feb; 4(1):56-63. PubMed ID: 10499103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase.
    Yoon J; Fujii S; Solomon EI
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6585-90. PubMed ID: 19346471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling tyrosinase and catecholase activity using new m-Xylyl-based ligands with bidentate alkylamine terminal coordination.
    Mandal S; Mukherjee J; Lloret F; Mukherjee R
    Inorg Chem; 2012 Dec; 51(24):13148-61. PubMed ID: 23194383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reaction of CN- with the binuclear copper site of Neurospora tyrosinase: its relevance for a comparison between tyrosinase and hemocyanin active sites.
    Beltramini M; Salvato B; Santamaria M; Lerch K
    Biochim Biophys Acta; 1990 Sep; 1040(3):365-72. PubMed ID: 2145978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism.
    Decker H; Tuczek F
    Trends Biochem Sci; 2000 Aug; 25(8):392-7. PubMed ID: 10916160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New mechanistic insights into coupled binuclear copper monooxygenases from the recent elucidation of the ternary intermediate of tyrosinase.
    Kipouros I; Solomon EI
    FEBS Lett; 2023 Jan; 597(1):65-78. PubMed ID: 36178078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.
    Itoh S
    Acc Chem Res; 2015 Jul; 48(7):2066-74. PubMed ID: 26086527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for H-bonding interactions to the μ-η
    Kipouros I; Stańczak A; Culka M; Andris E; Machonkin TR; Rulíšek L; Solomon EI
    Chem Commun (Camb); 2022 Mar; 58(24):3913-3916. PubMed ID: 35237779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into dioxygen-activating copper enzymes.
    Rosenzweig AC; Sazinsky MH
    Curr Opin Struct Biol; 2006 Dec; 16(6):729-35. PubMed ID: 17011183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of the tyrosinase/O
    Kipouros I; Stańczak A; Ginsbach JW; Andrikopoulos PC; Rulíšek L; Solomon EI
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2205619119. PubMed ID: 35939688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weakly coupled biologically relevant Cu(II)₂(μ-η¹:η¹-O₂) cis-peroxo adduct that binds side-on to additional metal ions.
    Dalle KE; Gruene T; Dechert S; Demeshko S; Meyer F
    J Am Chem Soc; 2014 May; 136(20):7428-34. PubMed ID: 24766458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of O2 activation and substrate hydroxylation in noncoupled binuclear copper monooxygenases.
    Cowley RE; Tian L; Solomon EI
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12035-12040. PubMed ID: 27790986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that dioxygen and substrate activation are tightly coupled in dopamine beta-monooxygenase. Implications for the reactive oxygen species.
    Evans JP; Ahn K; Klinman JP
    J Biol Chem; 2003 Dec; 278(50):49691-8. PubMed ID: 12966104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dioxygen binding to deoxyhemocyanin: electronic structure and mechanism of the spin-forbidden two-electron reduction of o(2).
    Metz M; Solomon EI
    J Am Chem Soc; 2001 May; 123(21):4938-50. PubMed ID: 11457321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF.
    Ginsbach JW; Kieber-Emmons MT; Nomoto R; Noguchi A; Ohnishi Y; Solomon EI
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10793-7. PubMed ID: 22711806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.