These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 153405)

  • 21. Fusion of proteoliposomes and cells. ATP-dependent Ca2+ uptake into erythrocytes catalyzed by Ca2+-ATPase from skeletal muscle.
    Eytan GD; Eytan E
    J Biol Chem; 1980 Jun; 255(11):4992-5. PubMed ID: 6445360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulatory interaction between calmodulin and ATP on the red cell Ca2+ pump.
    Muallem S; Karlish SJ
    Biochim Biophys Acta; 1980 Apr; 597(3):631-6. PubMed ID: 6445755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphorylation and dephosphorylation of the Ca2+ pump of human red cells in the presence of monovalent cations.
    Larocca JN; Rega AF; Garrahan PJ
    Biochim Biophys Acta; 1981 Jul; 645(1):10-6. PubMed ID: 6455158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of ionophore A23187 on erythrocytes. Relationship of atp and 2,3-diphosphoglycerate to calcium-binding capacity.
    Edmondson JW; Li TK
    Biochim Biophys Acta; 1976 Aug; 443(1):106-13. PubMed ID: 782543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Mg2+,ATP-dependent transport of Ca2+ in the endoplasmic reticulum of myometrial cells].
    Kosterin SA; Babich LG; Shlykov SG; Rovenets NA
    Biokhimiia; 1996 Jan; 61(1):73-81. PubMed ID: 8679780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium-chelator esters in intact human red cells.
    Tiffert T; Garcia-Sancho J; Lew VL
    Biochim Biophys Acta; 1984 Jun; 773(1):143-56. PubMed ID: 6428450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The plasma membrane calcium pump: regulation by a soluble Ca2+ binding protein.
    Vincenzi FF; Larsen FL
    Fed Proc; 1980 May; 39(7):2427-31. PubMed ID: 6445289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hysteretic activation of the Ca2+ pump revealed by calcium transients in human red cells.
    Scharff O; Foder B; Skibsted U
    Biochim Biophys Acta; 1983 May; 730(2):295-305. PubMed ID: 6221761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.
    Kribben A; Tyrakowski T; Schulz I
    Am J Physiol; 1983 May; 244(5):G480-90. PubMed ID: 6133452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties of the residual calcium pools in human red cells exposed to transient calcium loads.
    García-Sancho J; Lew VL
    J Physiol; 1988 Dec; 407():541-56. PubMed ID: 3151495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorylation of the Ca2+ pump intermediate in intact red cells, isolated membranes and inside-out vesicles.
    Szász I; Hasitz M; Sarkadi B; Gárdos G
    Mol Cell Biochem; 1978 Dec; 22(2-3):147-52. PubMed ID: 745597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of 1,2-diacylglycerol and phosphatidate in human erythrocytes treated with calcium ions and ionophore A23187.
    Allan D; Watts R; Michell RH
    Biochem J; 1976 May; 156(2):225-32. PubMed ID: 821476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport and control of Ca2+ by pigeon erythrocytes. I. Survey of some cell responses to a range of A23187 doses in the presence of Ca2+.
    Lee JW; Vidaver GA
    Cell Calcium; 1984 Dec; 5(6):501-24. PubMed ID: 6098373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of deoxygenation on active and passive Ca2+ transport and on the cytoplasmic Ca2+ levels of sickle cell anemia red cells.
    Etzion Z; Tiffert T; Bookchin RM; Lew VL
    J Clin Invest; 1993 Nov; 92(5):2489-98. PubMed ID: 8227363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ATP-stimulated Ca2+ transport into cholinergic Torpedo synaptic vesicles.
    Michaelson DM; Ophir I; Angel I
    J Neurochem; 1980 Jul; 35(1):116-24. PubMed ID: 6108987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of the Ca2+-pump by calmodulin in intact cells.
    Muallem S; Karlish SJ
    Biochim Biophys Acta; 1982 May; 687(2):329-32. PubMed ID: 6124277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for a magnesium- and ATP-dependent calcium extrusion pump in dog erythrocytes.
    Brown AM
    Biochim Biophys Acta; 1979 Jun; 554(1):195-203. PubMed ID: 378257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Voltage-dependence of Ca2+ uptake and ATP hydrolysis of reconstituted Ca2+-ATPase vesicles.
    Navarro J; Essig A
    Biophys J; 1984 Dec; 46(6):709-17. PubMed ID: 6240285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [ATP-dependent Ca2+-uptake by the plasma membrane fraction of the myometrium].
    Kurskiĭ MD; Kosterin SA; Bratkova NF; Zimina VP; Fomin VP
    Biokhimiia; 1981 Aug; 46(8):1435-44. PubMed ID: 6115681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP-driven Ca2+ pump in the basolateral membrane of rat kidney cortex catalyzes an electroneutral Ca2+/H+ antiport.
    Tsukamoto Y; Tamura T; Marumo F
    Biochim Biophys Acta; 1988 Nov; 945(2):281-90. PubMed ID: 2973352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.