These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15340795)

  • 1. Sulfoacetate generated by Rhodopseudomonas palustris from taurine.
    Denger K; Weinitschke S; Hollemeyer K; Cook AM
    Arch Microbiol; 2004 Oct; 182(2-3):254-8. PubMed ID: 15340795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfoacetaldehyde is excreted quantitatively by Acinetobacter calcoaceticus SW1 during growth with taurine as sole source of nitrogen.
    Weinitschke S; von Rekowski KS; Denger K; Cook AM
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1285-1290. PubMed ID: 15817795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase.
    Krejcík Z; Denger K; Weinitschke S; Hollemeyer K; Paces V; Cook AM; Smits TH
    Arch Microbiol; 2008 Aug; 190(2):159-68. PubMed ID: 18506422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isethionate as a product from taurine during nitrogen-limited growth of Klebsiella oxytoca TauN1.
    Styp von Rekowski K; Denger K; Cook AM
    Arch Microbiol; 2005 Aug; 183(5):325-30. PubMed ID: 15883781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfoacetate is degraded via a novel pathway involving sulfoacetyl-CoA and sulfoacetaldehyde in Cupriavidus necator H16.
    Weinitschke S; Hollemeyer K; Kusian B; Bowien B; Smits TH; Cook AM
    J Biol Chem; 2010 Nov; 285(46):35249-54. PubMed ID: 20693281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paracoccus denitrificans PD1222 utilizes hypotaurine via transamination followed by spontaneous desulfination to yield acetaldehyde and, finally, acetate for growth.
    Felux AK; Denger K; Weiss M; Cook AM; Schleheck D
    J Bacteriol; 2013 Jun; 195(12):2921-30. PubMed ID: 23603744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phototrophic utilization of taurine by the purple nonsulfur bacteria Rhodopseudomonas palustris and Rhodobacter sphaeroides.
    Novak RT; Gritzer RF; Leadbetter ER; Godchaux W
    Microbiology (Reading); 2004 Jun; 150(Pt 6):1881-1891. PubMed ID: 15184574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethanedisulfonate is degraded via sulfoacetaldehyde in Ralstonia sp. strain EDS1.
    Denger K; Cook AM
    Arch Microbiol; 2001 Jul; 176(1-2):89-95. PubMed ID: 11479707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-acetyltaurine dissimilated via taurine by Delftia acidovorans NAT.
    Mayer J; Denger K; Smits TH; Hollemeyer K; Groth U; Cook AM
    Arch Microbiol; 2006 Jul; 186(1):61-7. PubMed ID: 16802176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Hydrogen photoproduction from acetate by Rhodopseudomonas palustris].
    Yang SP; Zhao CG; Liu RT; Qu YB; Qian XM
    Sheng Wu Gong Cheng Xue Bao; 2002 Jul; 18(4):486-91. PubMed ID: 12385249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans.
    Brüggemann C; Denger K; Cook AM; Ruff J
    Microbiology (Reading); 2004 Apr; 150(Pt 4):805-816. PubMed ID: 15073291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of pII family (GlnK1, GlnK2, and GlnB) protein uridylylation in response to nitrogen availability for Rhodopseudomonas palustris.
    Connelly HM; Pelletier DA; Lu TY; Lankford PK; Hettich RL
    Anal Biochem; 2006 Oct; 357(1):93-104. PubMed ID: 16860774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A five-gene cluster involved in utilization of taurine-nitrogen and excretion of sulfoacetaldehyde by Acinetobacter radioresistens SH164.
    Krejčík Z; Schleheck D; Hollemeyer K; Cook AM
    Arch Microbiol; 2012 Oct; 194(10):857-63. PubMed ID: 22588221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source.
    Denger K; Ruff J; Schleheck D; Cook AM
    Microbiology (Reading); 2004 Jun; 150(Pt 6):1859-1867. PubMed ID: 15184572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-enabled analysis of the utilization of taurine as sole source of carbon or of nitrogen by Rhodobacter sphaeroides 2.4.1.
    Denger K; Smits THM; Cook AM
    Microbiology (Reading); 2006 Nov; 152(Pt 11):3197-3206. PubMed ID: 17074891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taurine catabolism. II. biochemical and genetic evidence for sulfoacetaldehyde sulfo-lyase involvement.
    Shimamoto G; Berk RS
    Biochim Biophys Acta; 1980 Sep; 632(1):121-30. PubMed ID: 6251906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phototrophic Lactate Utilization by
    Govindaraju A; McKinlay JB; LaSarre B
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sulfonated osmolyte N-methyltaurine is dissimilated by Alcaligenes faecalis and by Paracoccus versutus with release of methylamine.
    Weinitschke S; Denger K; Smits THM; Hollemeyer K; Cook AM
    Microbiology (Reading); 2006 Apr; 152(Pt 4):1179-1186. PubMed ID: 16549680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states.
    VerBerkmoes NC; Shah MB; Lankford PK; Pelletier DA; Strader MB; Tabb DL; McDonald WH; Barton JW; Hurst GB; Hauser L; Davison BH; Beatty JT; Harwood CS; Tabita FR; Hettich RL; Larimer FW
    J Proteome Res; 2006 Feb; 5(2):287-98. PubMed ID: 16457594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Rate of carbon assimilation by Rhodopseudomonas palustris].
    Cherniad'ev II; Doman NG
    Mikrobiologiia; 1971; 40(3):381-5. PubMed ID: 4398101
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.