These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 15340959)
1. Catalytic growth of Au nanoparticles by NAD(P)H cofactors: optical sensors for NAD(P)+-dependent biocatalyzed transformations. Xiao Y; Pavlov V; Levine S; Niazov T; Markovitch G; Willner I Angew Chem Int Ed Engl; 2004 Aug; 43(34):4519-22. PubMed ID: 15340959 [No Abstract] [Full Text] [Related]
2. Shape and color of au nanoparticles follow biocatalytic processes. Xiao Y; Shlyahovsky B; Popov I; Pavlov V; Willner I Langmuir; 2005 Jun; 21(13):5659-62. PubMed ID: 15952803 [TBL] [Abstract][Full Text] [Related]
3. Au nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations. Zayats M; Pogorelova SP; Kharitonov AB; Lioubashevski O; Katz E; Willner I Chemistry; 2003 Dec; 9(24):6108-14. PubMed ID: 14679522 [TBL] [Abstract][Full Text] [Related]
4. An Os(II)--bisbipyridine--4-picolinic acid complex mediates the biocatalytic growth of au nanoparticles: optical detection of glucose and acetylcholine esterase inhibition. Xiao Y; Pavlov V; Shlyahovsky B; Willner I Chemistry; 2005 Apr; 11(9):2698-704. PubMed ID: 15729675 [TBL] [Abstract][Full Text] [Related]
5. Gold nanoparticles: catalyst for the oxidation of NADH to NAD(+). Huang X; El-Sayed IH; Yi X; El-Sayed MA J Photochem Photobiol B; 2005 Nov; 81(2):76-83. PubMed ID: 16125965 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of electroactive layer-by-layer films of myoglobin with gold nanoparticles of different sizes. Zhang H; Lu H; Hu N J Phys Chem B; 2006 Feb; 110(5):2171-9. PubMed ID: 16471801 [TBL] [Abstract][Full Text] [Related]
7. A graphene-based Au(111) platform for electrochemical biosensing based catalytic recycling of products on gold nanoflowers. Liu B; Tang D; Tang J; Su B; Li Q; Chen G Analyst; 2011 Jun; 136(11):2218-20. PubMed ID: 21384013 [TBL] [Abstract][Full Text] [Related]
8. Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications. Yan YM; Yehezkeli O; Willner I Chemistry; 2007; 13(36):10168-75. PubMed ID: 17937376 [TBL] [Abstract][Full Text] [Related]
9. Assembly of myoglobin layer-by-layer films with poly(propyleneimine) dendrimer-stabilized gold nanoparticles and its application in electrochemical biosensing. Zhang H; Hu N Biosens Bioelectron; 2007 Oct; 23(3):393-9. PubMed ID: 17561388 [TBL] [Abstract][Full Text] [Related]
10. Efficient electrocatalytic oxidation of NADH at gold nanoparticles self-assembled on three-dimensional sol-gel network. Raj CR; Jena BK Chem Commun (Camb); 2005 Apr; (15):2005-7. PubMed ID: 15834487 [TBL] [Abstract][Full Text] [Related]
11. Optical and electrochemical detection of NADH and of NAD+-dependent biocatalyzed processes by the catalytic deposition of copper on gold nanoparticles. Shlyahovsky B; Katz E; Xiao Y; Pavlov V; Willner I Small; 2005 Feb; 1(2):213-6. PubMed ID: 17193433 [No Abstract] [Full Text] [Related]
12. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Daniel MC; Astruc D Chem Rev; 2004 Jan; 104(1):293-346. PubMed ID: 14719978 [No Abstract] [Full Text] [Related]
13. Optical detection of glucose by means of metal nanoparticles or semiconductor quantum dots. Bahshi L; Freeman R; Gill R; Willner I Small; 2009 Mar; 5(6):676-80. PubMed ID: 19226598 [No Abstract] [Full Text] [Related]
14. Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Jena BK; Raj CR Anal Chem; 2006 Sep; 78(18):6332-9. PubMed ID: 16970306 [TBL] [Abstract][Full Text] [Related]
15. Functionalized quantum dots to quantify NADPH and their use for NADP+-dependent biocatalyzed transformations. Kim MY; Kim YS; Kim J; Hah SS; Kim TJ; Kim YD Biotechnol Lett; 2011 Mar; 33(3):623-8. PubMed ID: 21107651 [TBL] [Abstract][Full Text] [Related]
16. Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design. Shang L; Chen H; Deng L; Dong S Biosens Bioelectron; 2008 Feb; 23(7):1180-4. PubMed ID: 18068347 [TBL] [Abstract][Full Text] [Related]
17. Chemiresistive sensing of volatile organic compounds with films of surfactant-stabilized gold and gold-silver alloy nanoparticles. IbaƱez FJ; Zamborini FP ACS Nano; 2008 Aug; 2(8):1543-52. PubMed ID: 19206357 [TBL] [Abstract][Full Text] [Related]
18. Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Jena BK; Raj CR Chemistry; 2006 Mar; 12(10):2702-8. PubMed ID: 16429473 [TBL] [Abstract][Full Text] [Related]
19. Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer-modified gold electrode. Li NB; Park JH; Park K; Kwon SJ; Shin H; Kwak J Biosens Bioelectron; 2008 May; 23(10):1519-26. PubMed ID: 18289843 [TBL] [Abstract][Full Text] [Related]
20. Au nanoparticle network-type thin films formed via mixed assembling and cross-linking route for biosensor application: quartz crystal microbalance study. Shen G; Wang H; Shen G; Yu R Anal Biochem; 2007 Jun; 365(1):1-6. PubMed ID: 17434135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]