These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15341154)

  • 1. Quantitative genetics of continuous reaction norms: thermal sensitivity of caterpillar growth rates.
    Kingsolver JG; Ragland GJ; Shlichta JG
    Evolution; 2004 Jul; 58(7):1521-9. PubMed ID: 15341154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in continuous reaction norms: quantifying directions of biological interest.
    Izem R; Kingsolver JG
    Am Nat; 2005 Aug; 166(2):277-89. PubMed ID: 16032579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feeding, growth, and the thermal environment of cabbage white caterpillars, Pieris rapae L.
    Kingsolver JG
    Physiol Biochem Zool; 2000; 73(5):621-8. PubMed ID: 11073798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variation, simplicity, and evolutionary constraints for function-valued traits.
    Kingsolver JG; Heckman N; Zhang J; Carter PA; Knies JL; Stinchcombe JR; Meyer K
    Am Nat; 2015 Jun; 185(6):E166-81. PubMed ID: 25996868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connecting thermal performance curve variation to the genotype: a multivariate QTL approach.
    Latimer CA; Foley BR; Chenoweth SF
    J Evol Biol; 2015 Jan; 28(1):155-68. PubMed ID: 25403928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evolution for generalists and specialists reveals multivariate genetic constraints on thermal reaction norms.
    Berger D; Walters RJ; Blanckenhorn WU
    J Evol Biol; 2014 Sep; 27(9):1975-89. PubMed ID: 25039963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of size and growth in fluctuating thermal environments: comparing reaction norms and performance curves.
    Kingsolver JG; Izem R; Ragland GJ
    Integr Comp Biol; 2004 Dec; 44(6):450-60. PubMed ID: 21676731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation, selection and evolution of function-valued traits.
    Kingsolver JG; Gomulkiewicz R; Carter PA
    Genetica; 2001; 112-113():87-104. PubMed ID: 11838789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An empirical test for a zone of canalization in thermal reaction norms.
    Fossen EIF; Pélabon C; Einum S
    J Evol Biol; 2018 Jul; 31(7):936-943. PubMed ID: 29701882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative genetic variation for thermal performance curves within and among natural populations of Drosophila serrata.
    Latimer CA; Wilson RS; Chenoweth SF
    J Evol Biol; 2011 May; 24(5):965-75. PubMed ID: 21306462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically Distinct Behavioral Modules Underlie Natural Variation in Thermal Performance Curves.
    Stegeman GW; Baird SE; Ryu WS; Cutter AD
    G3 (Bethesda); 2019 Jul; 9(7):2135-2151. PubMed ID: 31048400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative genetics of temperature performance curves of Neurospora crassa.
    Moghadam NN; Sidhu K; Summanen PAM; Ketola T; Kronholm I
    Evolution; 2020 Aug; 74(8):1772-1787. PubMed ID: 32432345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of spontaneous mutations to thermal sensitivity curve variation in Drosophila serrata.
    Latimer CA; McGuigan K; Wilson RS; Blows MW; Chenoweth SF
    Evolution; 2014 Jun; 68(6):1824-37. PubMed ID: 24576006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergence and ontogenetic coupling of larval behaviour and thermal reaction norms in three closely related butterflies.
    Berger D; Friberg M; Gotthard K
    Proc Biol Sci; 2011 Jan; 278(1703):313-20. PubMed ID: 20719778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate.
    Shama LN; Campero-Paz M; Wegner KM; DE Block M; Stoks R
    Mol Ecol; 2011 Jul; 20(14):2929-41. PubMed ID: 21689189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of temperature and wing morphology on quantitative genetic variation in the cricket Gryllus firmus, with an appendix examining the statistical properties of the Jackknife-MANOVA method of matrix comparison.
    Bégin M; Roff DA; Debat V
    J Evol Biol; 2004 Nov; 17(6):1255-67. PubMed ID: 15525410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of morphological traits among Drosophila melanogaster and D. simulans: genetic variability, clines and phenotypic plasticity.
    Gibert P; Capy P; Imasheva A; Moreteau B; Morin JP; Pétavy G; David JR
    Genetica; 2004 Mar; 120(1-3):165-79. PubMed ID: 15088656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature-size rule.
    Kingsolver JG; Massie KR; Ragland GJ; Smith MH
    J Evol Biol; 2007 May; 20(3):892-900. PubMed ID: 17465900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal adaptation in the fungal pathogen Mycosphaerella graminicola.
    Zhan J; McDonald BA
    Mol Ecol; 2011 Apr; 20(8):1689-701. PubMed ID: 21395890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relating environmental variation to selection on reaction norms: an experimental test.
    Kingsolver JG; Massie KR; Shlichta JG; Smith MH; Ragland GJ; Gomulkiewicz R
    Am Nat; 2007 Feb; 169(2):163-74. PubMed ID: 17211801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.