These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 15341169)

  • 21. A comparison of the fatigue behavior of human trabecular and cortical bone tissue.
    Choi K; Goldstein SA
    J Biomech; 1992 Dec; 25(12):1371-81. PubMed ID: 1491015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of stress ratio on the fatigue behaviour of compact bone.
    Ota M; Ishihara S; Fleck C; Goshima T; Eifler D
    Proc Inst Mech Eng H; 2005; 219(1):13-22. PubMed ID: 15777053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue.
    Bayraktar HH; Morgan EF; Niebur GL; Morris GE; Wong EK; Keaveny TM
    J Biomech; 2004 Jan; 37(1):27-35. PubMed ID: 14672565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong similarities in the creep and damage behaviour of a synthetic bone model compared to human trabecular bone under compressive cyclic loading.
    Purcell P; Tiernan S; McEvoy F; Morris S
    J Mech Behav Biomed Mater; 2015 Aug; 48():51-59. PubMed ID: 25913608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Model of flexural fatigue damage accumulation for cortical bone.
    Griffin LV; Gibeling JC; Martin RB; Gibson VA; Stover SM
    J Orthop Res; 1997 Jul; 15(4):607-14. PubMed ID: 9379272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fatigue is more damaging than creep in ligament revealed by modulus reduction and residual strength.
    Thornton GM; Schwab TD; Oxland TR
    Ann Biomed Eng; 2007 Oct; 35(10):1713-21. PubMed ID: 17629791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatigue of bone and bones: an analysis based on stressed volume.
    Taylor D
    J Orthop Res; 1998 Mar; 16(2):163-9. PubMed ID: 9621890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling modulus reduction in bovine trabecular bone damaged in compression.
    Moore TL; Gibson LJ
    J Biomech Eng; 2001 Dec; 123(6):613-22. PubMed ID: 11783733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical behavior of damaged trabecular bone.
    Keaveny TM; Wachtel EF; Guo XE; Hayes WC
    J Biomech; 1994 Nov; 27(11):1309-18. PubMed ID: 7798281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sex differences in long bone fatigue using a rat model.
    Moreno LD; Waldman SD; Grynpas MD
    J Orthop Res; 2006 Oct; 24(10):1926-32. PubMed ID: 16917903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus.
    Keaveny TM; Wachtel EF; Ford CM; Hayes WC
    J Biomech; 1994 Sep; 27(9):1137-46. PubMed ID: 7929463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of bone structural properties by accumulation and coalescence of microcracks.
    Danova NA; Colopy SA; Radtke CL; Kalscheur VL; Markel MD; Vanderby R; McCabe RP; Escarcega AJ; Muir P
    Bone; 2003 Aug; 33(2):197-205. PubMed ID: 14499353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A 3D damage model for trabecular bone based on fabric tensors.
    Zysset PK; Curnier A
    J Biomech; 1996 Dec; 29(12):1549-58. PubMed ID: 8945653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-lapsed microstructural imaging of bone failure behavior.
    Nazarian A; Müller R
    J Biomech; 2004 Jan; 37(1):55-65. PubMed ID: 14672568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains.
    Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM
    J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ratcheting-fatigue behavior of trabecular bone under cyclic tensile-compressive loading.
    Lin X; Zhao J; Gao L; Zhang C; Gao H
    J Mech Behav Biomed Mater; 2020 Dec; 112():104003. PubMed ID: 32823002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.