BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15341175)

  • 1. A 2-D model of flow-induced alterations in the geometry, structure, and properties of carotid arteries.
    Gleason RL; Taber LA; Humphrey JD
    J Biomech Eng; 2004 Jun; 126(3):371-81. PubMed ID: 15341175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A constrained mixture model for arterial adaptations to a sustained step change in blood flow.
    Humphrey JD; Rajagopal KR
    Biomech Model Mechanobiol; 2003 Nov; 2(2):109-26. PubMed ID: 14586812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a sustained extension on arterial growth and remodeling: a theoretical study.
    Gleason RL; Humphrey JD
    J Biomech; 2005 Jun; 38(6):1255-61. PubMed ID: 15863110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle.
    Cardamone L; Valentín A; Eberth JF; Humphrey JD
    Math Med Biol; 2010 Dec; 27(4):343-71. PubMed ID: 20484365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents.
    Alford PW; Humphrey JD; Taber LA
    Biomech Model Mechanobiol; 2008 Aug; 7(4):245-62. PubMed ID: 17786493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structure-based model of arterial remodeling in response to sustained hypertension.
    Tsamis A; Stergiopulos N; Rachev A
    J Biomech Eng; 2009 Oct; 131(10):101004. PubMed ID: 19831474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling.
    Valentín A; Humphrey JD
    J Biomech Eng; 2009 Oct; 131(10):101006. PubMed ID: 19831476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aortic pulse pressure homeostasis emerges from physiological adaptation of systemic arteries to local mechanical stresses.
    Nguyen PH; Tuzun E; Quick CM
    Am J Physiol Regul Integr Comp Physiol; 2016 Sep; 311(3):R522-31. PubMed ID: 27306830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms.
    Watton PN; Selimovic A; Raberger NB; Huang P; Holzapfel GA; Ventikos Y
    Biomech Model Mechanobiol; 2011 Feb; 10(1):109-32. PubMed ID: 20496095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 2D constrained mixture model for arterial adaptations to large changes in flow, pressure and axial stretch.
    Gleason RL; Humphrey JD
    Math Med Biol; 2005 Dec; 22(4):347-69. PubMed ID: 16319121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study on the effects of pressure-induced remodeling on geometry and mechanical non-homogeneity of conduit arteries.
    Rachev A; Gleason RL
    Biomech Model Mechanobiol; 2011 Feb; 10(1):79-93. PubMed ID: 20473704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging and modeling of acute pressure-induced changes of collagen and elastin microarchitectures in pig and human resistance arteries.
    Bloksgaard M; Leurgans TM; Spronck B; Heusinkveld MHG; Thorsted B; Rosenstand K; Nissen I; Hansen UM; Brewer JR; Bagatolli LA; Rasmussen LM; Irmukhamedov A; Reesink KD; De Mey JGR
    Am J Physiol Heart Circ Physiol; 2017 Jul; 313(1):H164-H178. PubMed ID: 28432057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical events within the arterial wall: The dynamic context for elastin fatigue.
    Hodis S; Zamir M
    J Biomech; 2009 May; 42(8):1010-6. PubMed ID: 19386312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. model and velocity analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5767-79. PubMed ID: 18824786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for shear stress sensing and transmission in vascular endothelial cells.
    Mazzag BM; Tamaresis JS; Barakat AI
    Biophys J; 2003 Jun; 84(6):4087-101. PubMed ID: 12770912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment.
    Warriner RK; Johnston KW; Cobbold RS
    Physiol Meas; 2008 Feb; 29(2):157-79. PubMed ID: 18256449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure.
    Valentín A; Cardamone L; Baek S; Humphrey JD
    J R Soc Interface; 2009 Mar; 6(32):293-306. PubMed ID: 18647735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inelastic multi-mechanism constitutive equation for cerebral arterial tissue.
    Wulandana R; Robertson AM
    Biomech Model Mechanobiol; 2005 Dec; 4(4):235-48. PubMed ID: 16283226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study.
    Saeid Khalafvand S; Han HC
    J Biomech Eng; 2015 Jun; 137(6):061007. PubMed ID: 25761257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.