BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15341175)

  • 21. Mechanical behavior of vessel wall: a comparative study of aorta, vena cava, and carotid artery.
    Silver FH; Snowhill PB; Foran DJ
    Ann Biomed Eng; 2003; 31(7):793-803. PubMed ID: 12971612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A viscoelastic fluid-structure interaction model for carotid arteries under pulsatile flow.
    Wang Z; Wood NB; Xu XY
    Int J Numer Method Biomed Eng; 2015 May; 31(5):e02709. PubMed ID: 25630788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carotid geometry effects on blood flow and on risk for vascular disease.
    Nguyen KT; Clark CD; Chancellor TJ; Papavassiliou DV
    J Biomech; 2008; 41(1):11-9. PubMed ID: 17919645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery.
    Soulis JV; Giannoglou GD; Chatzizisis YS; Seralidou KV; Parcharidis GE; Louridas GE
    Med Eng Phys; 2008 Jan; 30(1):9-19. PubMed ID: 17412633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time course of carotid artery growth and remodeling in response to altered pulsatility.
    Eberth JF; Popovic N; Gresham VC; Wilson E; Humphrey JD
    Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H1875-83. PubMed ID: 20852047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The biaxial active mechanical properties of the porcine primary renal artery.
    Zhou B; Rachev A; Shazly T
    J Mech Behav Biomed Mater; 2015 Aug; 48():28-37. PubMed ID: 25913605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. System and method for investigating arterial remodeling.
    Rachev A; Dominguez Z; Vito R
    J Biomech Eng; 2009 Oct; 131(10):104501. PubMed ID: 19831489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling effects of axial extension on arterial growth and remodeling.
    Valentín A; Humphrey JD
    Med Biol Eng Comput; 2009 Sep; 47(9):979-87. PubMed ID: 19649667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover.
    Gleason RL; Humphrey JD
    J Vasc Res; 2004; 41(4):352-63. PubMed ID: 15353893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the in-series and in-parallel contribution of elastin assessed by a structure-based biomechanical model of the arterial wall.
    Roy S; Tsamis A; Prod'hom G; Stergiopulos N
    J Biomech; 2008; 41(4):737-43. PubMed ID: 18456913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model.
    Perktold K; Resch M; Florian H
    J Biomech Eng; 1991 Nov; 113(4):464-75. PubMed ID: 1762445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the Effect of Red Blood Cells Deformability on Blood Flow Conditions in Human Carotid Artery Bifurcation.
    Urevc J; Žun I; Brumen M; Štok B
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27814428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. shear analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5781-95. PubMed ID: 18824787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arterial wall adaptation under elevated longitudinal stretch in organ culture.
    Han HC; Ku DN; Vito RP
    Ann Biomed Eng; 2003 Apr; 31(4):403-11. PubMed ID: 12723681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flow patterns and wall shear stress distribution in human internal carotid arteries: the geometric effect on the risk for stenoses.
    Zhang C; Xie S; Li S; Pu F; Deng X; Fan Y; Li D
    J Biomech; 2012 Jan; 45(1):83-9. PubMed ID: 22079384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries.
    Gleason RL; Gray SP; Wilson E; Humphrey JD
    J Biomech Eng; 2004 Dec; 126(6):787-95. PubMed ID: 15796337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human red blood cells deformed under thermal fluid flow.
    Foo JJ; Chan V; Feng ZQ; Liu KK
    Biomed Mater; 2006 Mar; 1(1):1-7. PubMed ID: 18458379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Matrix metalloproteinase-2 and -9 are associated with high stresses predicted using a nonlinear heterogeneous model of arteries.
    Kim YS; Galis ZS; Rachev A; Han HC; Vito RP
    J Biomech Eng; 2009 Jan; 131(1):011009. PubMed ID: 19045925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The contribution of vascular smooth muscle, elastin and collagen on the passive mechanics of porcine carotid arteries.
    Kochová P; Kuncová J; Svíglerová J; Cimrman R; Miklíková M; Liška V; Tonar Z
    Physiol Meas; 2012 Aug; 33(8):1335-51. PubMed ID: 22813960
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of selective digestion of elastin and collagen on mechanical properties of human aortas.
    Kobielarz M; Chwiłkowska A; Turek A; Maksymowicz K; Marciniak M
    Acta Bioeng Biomech; 2015; 17(2):55-62. PubMed ID: 26415712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.