These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 1534140)

  • 41. Two components of DNA replication-dependent LexA cleavage.
    Myka KK; Marians KJ
    J Biol Chem; 2020 Jul; 295(30):10368-10379. PubMed ID: 32513870
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Induction of only one SOS operon, umuDC, is required for SOS mutagenesis in Escherichia coli.
    Sommer S; Knezevic J; Bailone A; Devoret R
    Mol Gen Genet; 1993 May; 239(1-2):137-44. PubMed ID: 8510643
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Constitutive and UV-mediated activation of RecA protein: combined effects of recA441 and recF143 mutations and of addition of nucleosides and adenine.
    Sassanfar M; Roberts J
    J Bacteriol; 1991 Sep; 173(18):5869-75. PubMed ID: 1715863
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of the SOS response in Bacillus subtilis: evidence for a LexA repressor homolog.
    Wojciechowski MF; Peterson KR; Love PE
    J Bacteriol; 1991 Oct; 173(20):6489-98. PubMed ID: 1917874
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two mutant RecA proteins possessing pH-dependent strand exchange activity exhibit pH-dependent presynaptic filament formation.
    Pinsince JM; Muench KA; Bryant FR; Griffith JD
    J Mol Biol; 1993 Sep; 233(1):59-66. PubMed ID: 8377192
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two forms of RecA-single-stranded DNA-adenosine 5'-O-(3-thiotriphosphate) complexes with different activities for cleavage of phage phi 80 cI repressor.
    Eguchi Y; Ogawa T; Ogawa H
    J Mol Biol; 1988 Nov; 204(1):61-7. PubMed ID: 3063827
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biochemical events essential to the recombination activity of Escherichia coli RecA protein. I. Properties of the mutant RecA142 protein.
    Kowalczykowski SC; Burk DL; Krupp RA
    J Mol Biol; 1989 Jun; 207(4):719-33. PubMed ID: 2527303
    [TBL] [Abstract][Full Text] [Related]  

  • 48. N-terminal 33 amino acid residues of Escherichia coli RecA protein contribute to its self-assembly.
    Mikawa T; Masui R; Ogawa T; Ogawa H; Kuramitsu S
    J Mol Biol; 1995 Jul; 250(4):471-83. PubMed ID: 7616568
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of the oligomeric states of RecA protein: monomeric RecA protein can form a nucleoprotein filament.
    Masui R; Mikawa T; Kato R; Kuramitsu S
    Biochemistry; 1998 Oct; 37(42):14788-97. PubMed ID: 9778353
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biochemical basis of SOS-induced mutagenesis in Escherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD'2C mutagenic complex and RecA protein.
    Tang M; Bruck I; Eritja R; Turner J; Frank EG; Woodgate R; O'Donnell M; Goodman MF
    Proc Natl Acad Sci U S A; 1998 Aug; 95(17):9755-60. PubMed ID: 9707548
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single molecule analysis of a red fluorescent RecA protein reveals a defect in nucleoprotein filament nucleation that relates to its reduced biological functions.
    Handa N; Amitani I; Gumlaw N; Sandler SJ; Kowalczykowski SC
    J Biol Chem; 2009 Jul; 284(28):18664-73. PubMed ID: 19419960
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent ATPase.
    Erdem AL; Jaszczur M; Bertram JG; Woodgate R; Cox MM; Goodman MF
    Elife; 2014 Apr; 3():e02384. PubMed ID: 24843026
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification of an SOS repressor from Bacillus subtilis.
    Lovett CM; Cho KC; O'Gara TM
    J Bacteriol; 1993 Nov; 175(21):6842-9. PubMed ID: 8226626
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The LexA repressor binds within the deep helical groove of the activated RecA filament.
    Yu X; Egelman EH
    J Mol Biol; 1993 May; 231(1):29-40. PubMed ID: 8496964
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of Escherichia coli RecA coprotease activities by DinI.
    Yasuda T; Morimatsu K; Horii T; Nagata T; Ohmori H
    EMBO J; 1998 Jun; 17(11):3207-16. PubMed ID: 9606202
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic separation of Escherichia coli recA functions for SOS mutagenesis and repressor cleavage.
    Ennis DG; Ossanna N; Mount DW
    J Bacteriol; 1989 May; 171(5):2533-41. PubMed ID: 2651406
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RecA protein and SOS. Correlation of mutagenesis phenotype with binding of mutant RecA proteins to duplex DNA and LexA cleavage.
    Lu C; Echols H
    J Mol Biol; 1987 Aug; 196(3):497-504. PubMed ID: 2960817
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of recA803, a partial suppressor of recF, to analyze the effects of the mutant Ssb (single-stranded DNA-binding) proteins in vivo and in vitro.
    Madiraju MV; Clark AJ
    Mol Gen Genet; 1990 Oct; 224(1):129-35. PubMed ID: 2148967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Construction of a recombinase-deficient mutant recA protein that retains single-stranded DNA-dependent ATPase activity.
    Bryant FR
    J Biol Chem; 1988 Jun; 263(18):8716-23. PubMed ID: 2967815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The RadA protein from a hyperthermophilic archaeon Pyrobaculum islandicum is a DNA-dependent ATPase that exhibits two disparate catalytic modes, with a transition temperature at 75 degrees C.
    Spies M; Kil Y; Masui R; Kato R; Kujo C; Ohshima T; Kuramitsu S; Lanzov V
    Eur J Biochem; 2000 Feb; 267(4):1125-37. PubMed ID: 10672022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.