BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 15341595)

  • 41. Potentiation of tumor necrosis factor-alpha expression by YC-1 in alveolar macrophages through a cyclic GMP-independent pathway.
    Hwang TL; Wu CC; Guh JH; Teng CM
    Biochem Pharmacol; 2003 Jul; 66(1):149-56. PubMed ID: 12818375
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of the soluble guanylyl cyclase alpha1/alpha2 subunits in the relaxant effect of CO and CORM-2 in murine gastric fundus.
    De Backer O; Elinck E; Sips P; Buys E; Brouckaert P; Lefebvre RA
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Nov; 378(5):493-502. PubMed ID: 18563392
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The soluble guanylyl cyclase activator YC-1 increases intracellular cGMP and cAMP via independent mechanisms in INS-1E cells.
    Ramos-Espiritu LS; Hess KC; Buck J; Levin LR
    J Pharmacol Exp Ther; 2011 Sep; 338(3):925-31. PubMed ID: 21665942
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Desensitization of the soluble guanylyl cyclase/cGMP pathway by lipopolysaccharide in rat isolated pulmonary artery but not aorta.
    El-Awady MS; Smirnov SV; Watson ML
    Br J Pharmacol; 2008 Dec; 155(8):1164-73. PubMed ID: 18806822
    [TBL] [Abstract][Full Text] [Related]  

  • 45. YC-1 binding to the β subunit of soluble guanylyl cyclase overcomes allosteric inhibition by the α subunit.
    Purohit R; Fritz BG; The J; Issaian A; Weichsel A; David CL; Campbell E; Hausrath AC; Rassouli-Taylor L; Garcin ED; Gage MJ; Montfort WR
    Biochemistry; 2014 Jan; 53(1):101-14. PubMed ID: 24328155
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nitric oxide-independent down-regulation of soluble guanylyl cyclase by bacterial endotoxin in astroglial cells.
    Baltrons MA; García A
    J Neurochem; 1999 Nov; 73(5):2149-57. PubMed ID: 10537075
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [YC-1-like potentiation of nitric oxide-dependent activation of soluble guanylyl cyclase by adrenochrome].
    Severina IS; Piatakova NV; Shchegolev AIu; Sidorova TA
    Biomed Khim; 2008; 54(6):679-86. PubMed ID: 19205427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of extracellular Ca(2+) entry by YC-1, an activator of soluble guanylyl cyclase, through a cyclic GMP-independent pathway in rat neutrophils.
    Wang JP; Chang LC; Huang LJ; Kuo SC
    Biochem Pharmacol; 2001 Sep; 62(6):679-84. PubMed ID: 11551512
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells.
    Mejía-García TA; Portugal CC; Encarnação TG; Prado MA; Paes-de-Carvalho R
    Cell Signal; 2013 Dec; 25(12):2424-39. PubMed ID: 23958999
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Post-transcriptional regulation of soluble guanylyl cyclase expression in rat aorta.
    Kloss S; Furneaux H; Mülsch A
    J Biol Chem; 2003 Jan; 278(4):2377-83. PubMed ID: 12441354
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A real-time fluorescent assay of the purified nitric oxide receptor, guanylyl cyclase.
    Newton M; Niewczas I; Clark J; Bellamy TC
    Anal Biochem; 2010 Jul; 402(2):129-36. PubMed ID: 20371357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Methylene blue, a soluble guanylyl cyclase inhibitor, reduces the sevoflurane minimum alveolar anesthetic concentration and decreases the brain cyclic guanosine monophosphate content in rats.
    Masaki E; Kondo I
    Anesth Analg; 1999 Aug; 89(2):484-9. PubMed ID: 10439772
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of soluble guanylyl cyclase activity by oestradiol and progesterone in the hypothalamus but not hippocampus of female rats.
    Reyna-Neyra A; Sarkar G; Etgen AM
    J Neuroendocrinol; 2007 Jun; 19(6):418-25. PubMed ID: 17388815
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuronal differentiation of NG108-15 cells has impact on nitric oxide- and membrane (natriuretic peptide receptor-A) cyclic GMP-generating proteins.
    Müller D; Greenland KJ; Speth RC; Middendorff R
    Mol Cell Endocrinol; 2010 May; 320(1-2):118-27. PubMed ID: 20097258
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regional and age-dependent expression of the nitric oxide receptor, soluble guanylyl cyclase, in the human brain.
    Ibarra C; Nedvetsky PI; Gerlach M; Riederer P; Schmidt HH
    Brain Res; 2001 Jul; 907(1-2):54-60. PubMed ID: 11430885
    [TBL] [Abstract][Full Text] [Related]  

  • 56. What is next in nitric oxide research? From cardiovascular system to cancer biology.
    Bian K; Murad F
    Nitric Oxide; 2014 Dec; 43():3-7. PubMed ID: 25153032
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nitric oxide regulates the levels of cGMP accumulation in the cricket brain.
    Aonuma H; Niwa K
    Acta Biol Hung; 2004; 55(1-4):65-70. PubMed ID: 15270219
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon monoxide relaxes the female pig urethra as effectively as nitric oxide in the presence of YC-1.
    Schroder A; Hedlund P; Andersson KE
    J Urol; 2002 Apr; 167(4):1892-6. PubMed ID: 11912455
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Binding of YC-1/BAY 41-2272 to soluble guanylate cyclase: A new perspective to the mechanism of activation.
    Pal B; Kitagawa T
    Biochem Biophys Res Commun; 2010 Jul; 397(3):375-9. PubMed ID: 20513359
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative relaxant effects of YC-1 and DEA/NO on the sheep sphincter of Oddi.
    Bagcivan I; Kaya T; Turan M; Karadas B; Sarac B; Duman M
    Pancreatology; 2006; 6(3):215-9. PubMed ID: 16534245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.