BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 15341595)

  • 81. Beta-amyloid peptides decrease soluble guanylyl cyclase expression in astroglial cells.
    Baltrons MA; Pedraza CE; Heneka MT; García A
    Neurobiol Dis; 2002 Jul; 10(2):139-49. PubMed ID: 12127152
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The vasodilator-stimulated phosphoprotein (VASP): target of YC-1 and nitric oxide effects in human and rat platelets.
    Becker EM; Schmidt P; Schramm M; Schröder H; Walter U; Hoenicka M; Gerzer R; Stasch JP
    J Cardiovasc Pharmacol; 2000 Mar; 35(3):390-7. PubMed ID: 10710123
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Probing soluble guanylate cyclase activation by CO and YC-1 using resonance Raman spectroscopy.
    Ibrahim M; Derbyshire ER; Marletta MA; Spiro TG
    Biochemistry; 2010 May; 49(18):3815-23. PubMed ID: 20353168
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Immortalization of human melanocytes does not alter the de novo properties of nitric oxide to induce cell detachment from extracellular matrix components via cGMP.
    Ivanova K; Lambers B; van den Wijngaard R; Le Poole IC; Grigorieva O; Gerzer R; Das PK
    In Vitro Cell Dev Biol Anim; 2008; 44(8-9):385-95. PubMed ID: 18594937
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Synthesis of 1-benzyl-3-(5'-hydroxymethyl-2'-furyl)indazole analogues as novel antiplatelet agents.
    Lee FY; Lien JC; Huang LJ; Huang TM; Tsai SC; Teng CM; Wu CC; Cheng FC; Kuo SC
    J Med Chem; 2001 Oct; 44(22):3746-9. PubMed ID: 11606139
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Characterization of NO-sensitive guanylyl cyclase: expression in an identified interneuron involved in NO-cGMP-dependent memory formation.
    Ribeiro M; Straub VA; Schofield M; Picot J; Benjamin PR; O'Shea M; Korneev SA
    Eur J Neurosci; 2008 Sep; 28(6):1157-65. PubMed ID: 18783373
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A point-mutated guanylyl cyclase with features of the YC-1-stimulated enzyme: implications for the YC-1 binding site?
    Friebe A; Russwurm M; Mergia E; Koesling D
    Biochemistry; 1999 Nov; 38(46):15253-7. PubMed ID: 10563809
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Salutary properties of YC-1 in the cardiovascular and hematological systems.
    Tulis DA
    Curr Med Chem Cardiovasc Hematol Agents; 2004 Oct; 2(4):343-59. PubMed ID: 15320784
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Soluble guanylate cyclase: a potential therapeutic target for heart failure.
    Gheorghiade M; Marti CN; Sabbah HN; Roessig L; Greene SJ; Böhm M; Burnett JC; Campia U; Cleland JG; Collins SP; Fonarow GC; Levy PD; Metra M; Pitt B; Ponikowski P; Sato N; Voors AA; Stasch JP; Butler J;
    Heart Fail Rev; 2013 Mar; 18(2):123-34. PubMed ID: 22622468
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Conventional and Unconventional Mechanisms for Soluble Guanylyl Cyclase Signaling.
    Gao Y
    J Cardiovasc Pharmacol; 2016 May; 67(5):367-72. PubMed ID: 26452163
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A functional domain of the alpha1 subunit of soluble guanylyl cyclase is necessary for activation of the enzyme by nitric oxide and YC-1 but is not involved in heme binding.
    Koglin M; Behrends S
    J Biol Chem; 2003 Apr; 278(14):12590-7. PubMed ID: 12560334
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A VASP-Rac-soluble guanylyl cyclase pathway controls cGMP production in adipocytes.
    Jennissen K; Siegel F; Liebig-Gonglach M; Hermann MR; Kipschull S; van Dooren S; Kunz WS; Fässler R; Pfeifer A
    Sci Signal; 2012 Aug; 5(239):ra62. PubMed ID: 22932701
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Role of sGC-dependent NO signalling and myocardial infarction risk.
    Wobst J; Kessler T; Dang TA; Erdmann J; Schunkert H
    J Mol Med (Berl); 2015 Apr; 93(4):383-94. PubMed ID: 25733135
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The receptor-like properties of nitric oxide-activated soluble guanylyl cyclase in intact cells.
    Bellamy TC; Garthwaite J
    Mol Cell Biochem; 2002 Jan; 230(1-2):165-76. PubMed ID: 11952092
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Exploring the potential of NO-independent stimulators and activators of soluble guanylate cyclase for the medical treatment of erectile dysfunction.
    Gur S; Kadowitz PJ; Hellstrom WJ
    Curr Pharm Des; 2010 May; 16(14):1619-33. PubMed ID: 20201788
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Soluble guanylyl cyclase during postnatal porcine pulmonary maturation.
    Moreno L; Gonzalez-Luis G; Cogolludo A; Lodi F; Lopez-Farre A; Tamargo J; Villamor E; Perez-Vizcaino F
    Am J Physiol Lung Cell Mol Physiol; 2005 Jan; 288(1):L125-30. PubMed ID: 15447938
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The Impact of the Nitric Oxide (NO)/Soluble Guanylyl Cyclase (sGC) Signaling Cascade on Kidney Health and Disease: A Preclinical Perspective.
    Krishnan SM; Kraehling JR; Eitner F; Bénardeau A; Sandner P
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29890734
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Nucleotide regulation of soluble guanylate cyclase substrate specificity.
    Derbyshire ER; Fernhoff NB; Deng S; Marletta MA
    Biochemistry; 2009 Aug; 48(31):7519-24. PubMed ID: 19527054
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Prolonged exposure to YC-1 induces apoptosis in adrenomedullary endothelial and chromaffin cells through a cGMP-independent mechanism.
    Ferrero R; Torres M
    Neuropharmacology; 2001 Dec; 41(7):895-906. PubMed ID: 11684154
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Allostery in recombinant soluble guanylyl cyclase from Manduca sexta.
    Hu X; Murata LB; Weichsel A; Brailey JL; Roberts SA; Nighorn A; Montfort WR
    J Biol Chem; 2008 Jul; 283(30):20968-77. PubMed ID: 18515359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.