BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 15341648)

  • 1. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus.
    Park G; Bruno KS; Staiger CJ; Talbot NJ; Xu JR
    Mol Microbiol; 2004 Sep; 53(6):1695-707. PubMed ID: 15341648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea.
    Park G; Xue C; Zheng L; Lam S; Xu JR
    Mol Plant Microbe Interact; 2002 Mar; 15(3):183-92. PubMed ID: 11952120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection.
    Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ
    Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GcSTUA, an APSES transcription factor, is required for generation of appressorial turgor pressure and full pathogenicity of Glomerella cingulata.
    Tong X; Zhang X; Plummer KM; Stowell KM; Sullivan PA; Farley PC
    Mol Plant Microbe Interact; 2007 Sep; 20(9):1102-11. PubMed ID: 17849713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A MADS-box transcription factor MoMcm1 is required for male fertility, microconidium production and virulence in Magnaporthe oryzae.
    Zhou X; Liu W; Wang C; Xu Q; Wang Y; Ding S; Xu JR
    Mol Microbiol; 2011 Apr; 80(1):33-53. PubMed ID: 21276092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel gene MGA1 is required for appressorium formation in Magnaporthe grisea.
    Gupta A; Chattoo BB
    Fungal Genet Biol; 2007 Nov; 44(11):1157-69. PubMed ID: 17462923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation.
    Kamakura T; Yamaguchi S; Saitoh K; Teraoka T; Yamaguchi I
    Mol Plant Microbe Interact; 2002 May; 15(5):437-44. PubMed ID: 12036274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical model for appressorial design in Magnaporthe grisea.
    Tongen A; Goriely A; Tabor M
    J Theor Biol; 2006 May; 240(1):1-8. PubMed ID: 16207493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea.
    Bhambra GK; Wang ZY; Soanes DM; Wakley GE; Talbot NJ
    Mol Microbiol; 2006 Jul; 61(1):46-60. PubMed ID: 16824094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
    Li L; Xue C; Bruno K; Nishimura M; Xu JR
    Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae.
    Kong LA; Li GT; Liu Y; Liu MG; Zhang SJ; Yang J; Zhou XY; Peng YL; Xu JR
    Fungal Genet Biol; 2013 Jul; 56():33-41. PubMed ID: 23591122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of plant-generated reactive oxygen species is required for successful infection by the rice blast fungus.
    Huang K; Czymmek KJ; Caplan JL; Sweigard JA; Donofrio NM
    Virulence; 2011; 2(6):559-62. PubMed ID: 21971181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi.
    Sesma A; Osbourn AE
    Nature; 2004 Sep; 431(7008):582-6. PubMed ID: 15457264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mirl is highly upregulated and localized to nuclei during infectious hyphal growth in the rice blast fungus.
    Li L; Ding SL; Sharon A; Orbach M; Xu JR
    Mol Plant Microbe Interact; 2007 Apr; 20(4):448-58. PubMed ID: 17427815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea.
    Lu JP; Feng XX; Liu XH; Lu Q; Wang HK; Lin FC
    Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA.
    Ramos-Pamplona M; Naqvi NI
    Mol Microbiol; 2006 Jul; 61(1):61-75. PubMed ID: 16824095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Cdc42 ortholog is required for penetration and virulence of Magnaporthe grisea.
    Zheng W; Zhao Z; Chen J; Liu W; Ke H; Zhou J; Lu G; Darvill AG; Albersheim P; Wu S; Wang Z
    Fungal Genet Biol; 2009; 46(6-7):450-60. PubMed ID: 19298860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagic fungal cell death is necessary for infection by the rice blast fungus.
    Veneault-Fourrey C; Barooah M; Egan M; Wakley G; Talbot NJ
    Science; 2006 Apr; 312(5773):580-3. PubMed ID: 16645096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae SSD1 orthologues are essential for host infection by the ascomycete plant pathogens Colletotrichum lagenarium and Magnaporthe grisea.
    Tanaka S; Yamada K; Yabumoto K; Fujii S; Huser A; Tsuji G; Koga H; Dohi K; Mori M; Shiraishi T; O'Connell R; Kubo Y
    Mol Microbiol; 2007 Jun; 64(5):1332-49. PubMed ID: 17542924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A homeobox gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae.
    Liu W; Xie S; Zhao X; Chen X; Zheng W; Lu G; Xu JR; Wang Z
    Mol Plant Microbe Interact; 2010 Apr; 23(4):366-75. PubMed ID: 20192824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.