These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 15341843)
1. Reverse Monte Carlo modeling of the structure of colloidal aggregates. Pusztai L; Dominguez H; Pizio OA J Colloid Interface Sci; 2004 Sep; 277(2):327-34. PubMed ID: 15341843 [TBL] [Abstract][Full Text] [Related]
2. Understanding the structure of aqueous cesium chloride solutions by combining diffraction experiments, molecular dynamics simulations, and reverse Monte Carlo modeling. Mile V; Pusztai L; Dominguez H; Pizio O J Phys Chem B; 2009 Aug; 113(31):10760-9. PubMed ID: 19588949 [TBL] [Abstract][Full Text] [Related]
3. Milk gelation studied with small angle neutron scattering techniques and Monte Carlo simulations. van Heijkamp LF; de Schepper IM; Strobl M; Tromp RH; Heringa JR; Bouwman WG J Phys Chem A; 2010 Feb; 114(7):2412-26. PubMed ID: 20121284 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional off-lattice Monte Carlo simulations on a direct relation between experimental process parameters and fractal dimension of colloidal aggregates. Kim S; Lee KS; Zachariah MR; Lee D J Colloid Interface Sci; 2010 Apr; 344(2):353-61. PubMed ID: 20132942 [TBL] [Abstract][Full Text] [Related]
5. Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of rod-like ferromagnetic particles in the absence of an applied magnetic field. Aoshima M; Satoh A J Colloid Interface Sci; 2006 Jan; 293(1):77-87. PubMed ID: 16038920 [TBL] [Abstract][Full Text] [Related]
6. Two-dimensional Monte Carlo simulations of a polydisperse colloidal dispersion composed of ferromagnetic particles for the case of no external magnetic field. Aoshima M; Satoh A J Colloid Interface Sci; 2004 Dec; 280(1):83-90. PubMed ID: 15476777 [TBL] [Abstract][Full Text] [Related]
7. On the structure of aqueous cesium fluoride and cesium iodide solutions: diffraction experiments, molecular dynamics simulations, and reverse Monte Carlo modeling. Mile V; Gereben O; Kohara S; Pusztai L J Phys Chem B; 2012 Aug; 116(32):9758-67. PubMed ID: 22794148 [TBL] [Abstract][Full Text] [Related]
8. Molecular modeling of porous carbons using the hybrid reverse Monte Carlo method. Jain SK; Pellenq RJ; Pikunic JP; Gubbins KE Langmuir; 2006 Nov; 22(24):9942-8. PubMed ID: 17106983 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of small-angle x-ray scattering data of a Raney-type Ni catalyst with computer simulation. Tóth G; Körmendi K; Vrabecz A; Bóta A J Chem Phys; 2004 Dec; 121(21):10634-40. PubMed ID: 15549946 [TBL] [Abstract][Full Text] [Related]
10. Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems. Chen JC; Kim AS Adv Colloid Interface Sci; 2004 Dec; 112(1-3):159-73. PubMed ID: 15581559 [TBL] [Abstract][Full Text] [Related]
11. The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling. Temleitner L; Pusztai L; Schweika W J Phys Condens Matter; 2007 Aug; 19(33):335207. PubMed ID: 21694130 [TBL] [Abstract][Full Text] [Related]
12. Interpreting size-exclusion data for highly branched biopolymers by reverse monte carlo simulations. Watts CJ; Gray-Weale A; Gilbert RG Biomacromolecules; 2007 Feb; 8(2):455-63. PubMed ID: 17291069 [TBL] [Abstract][Full Text] [Related]
13. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory. Chen B; Kim H; Keasler SJ; Nellas RB J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920 [TBL] [Abstract][Full Text] [Related]
14. Biomolecule-directed assembly of nanoscale building blocks studied via lattice Monte Carlo simulation. Chen T; Lamm MH; Glotzer SC J Chem Phys; 2004 Aug; 121(8):3919-29. PubMed ID: 15303961 [TBL] [Abstract][Full Text] [Related]
15. Aggregation-fragmentation in a model of DNA-mediated colloidal assembly. Pierce F; Sorensen CM; Chakrabarti A Langmuir; 2005 Sep; 21(20):8992-9. PubMed ID: 16171321 [TBL] [Abstract][Full Text] [Related]
16. Two-dimensional Monte Carlo simulations of a colloidal dispersion composed of polydisperse ferromagnetic particles in an applied magnetic field. Aoshima M; Satoh A J Colloid Interface Sci; 2005 Aug; 288(2):475-88. PubMed ID: 15927615 [TBL] [Abstract][Full Text] [Related]
17. Hydration structure in concentrated aqueous lithium chloride solutions: a reverse Monte Carlo based combination of molecular dynamics simulations and diffraction data. Harsányi I; Pusztai L J Chem Phys; 2012 Nov; 137(20):204503. PubMed ID: 23206015 [TBL] [Abstract][Full Text] [Related]
18. First example of multi-scale reverse Monte Carlo modeling for small-angle scattering experimental data using reverse mapping from coarse-grained particles to atoms. Hagita K; McGreevy RL; Arai T; Inui M; Matsuda K; Tamura K J Phys Condens Matter; 2010 Oct; 22(40):404215. PubMed ID: 21386576 [TBL] [Abstract][Full Text] [Related]
19. Reverse Monte Carlo modeling of ion conducting network glasses: an evaluation based on molecular dynamics simulations. Müller CR; Kathriarachchi V; Schuch M; Maass P; Petkov VG Phys Chem Chem Phys; 2010 Sep; 12(35):10444-51. PubMed ID: 20585683 [TBL] [Abstract][Full Text] [Related]
20. Reverse Monte Carlo simulations, Raman scattering, and thermal studies of an amorphous Ge30Se70 alloy produced by mechanical alloying. Machado KD; de Lima JC; Campos CE; Grandi TA; Pizani PS J Chem Phys; 2004 Jan; 120(1):329-36. PubMed ID: 15267293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]