BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15342018)

  • 1. Selective separation of pyrite and chalcopyrite by biomodulation.
    Chandraprabha MN; Natarajan KA; Modak JM
    Colloids Surf B Biointerfaces; 2004 Sep; 37(3-4):93-100. PubMed ID: 15342018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective separation of arsenopyrite from pyrite by biomodulation in the presence of Acidithiobacillus ferrooxidans.
    Chandraprabha MN; Natarajan KA; Somasundaran P
    J Colloid Interface Sci; 2004 Aug; 276(2):323-32. PubMed ID: 15271559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans.
    Kocaman AT; Cemek M; Edwards KJ
    Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A direct observation of bacterial coverage and biofilm formation by Acidithiobacillus ferrooxidans on chalcopyrite and pyrite surfaces.
    Yang Y; Tan SN; Glenn AM; Harmer S; Bhargava S; Chen M
    Biofouling; 2015; 31(7):575-86. PubMed ID: 26343200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa.
    Patra P; Natarajan KA
    J Colloid Interface Sci; 2006 Jun; 298(2):720-9. PubMed ID: 16458911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution.
    Liao R; Yang B; Huang X; Hong M; Yu S; Liu S; Wang J; Qiu G
    Chemosphere; 2021 Sep; 279():130516. PubMed ID: 33878694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor.
    Africa CJ; van Hille RP; Harrison ST
    Appl Microbiol Biotechnol; 2013 Feb; 97(3):1317-24. PubMed ID: 22410741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores.
    Harahuc L; Lizama HM; Suzuki I
    Biotechnol Bioeng; 2000 Jul; 69(2):196-203. PubMed ID: 10861398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation.
    Mitchell TK; Nguyen AV; Evans GM
    Adv Colloid Interface Sci; 2005 Jun; 114-115():227-37. PubMed ID: 15894282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential surface modification mechanism of chalcopyrite and pyrite by Thiobacillus ferrooxidans and its response to bioflotation.
    Su C; Cai J; Zheng Q; Peng R; Yu X; Shen P; Liu D
    Bioresour Technol; 2024 May; 399():130619. PubMed ID: 38552857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite.
    Chandra AP; Gerson AR
    Adv Colloid Interface Sci; 2009 Jan; 145(1-2):97-110. PubMed ID: 18851843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans.
    Zhao H; Wang J; Hu M; Qin W; Zhang Y; Qiu G
    Bioresour Technol; 2013 Dec; 149():71-6. PubMed ID: 24084207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Separation of Chalcopyrite from Pyrite Using Sodium Humate: Flotation Behavior and Adsorption Mechanism.
    Sun D; Li M; Fu Y; Pan Z; Cui R; Wang D; Zhang M; Yao W
    ACS Omega; 2023 Nov; 8(47):45129-45136. PubMed ID: 38046350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species.
    Bellenberg S; Barthen R; Boretska M; Zhang R; Sand W; Vera M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1435-49. PubMed ID: 25381488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans.
    Zhu J; Wang Q; Zhou S; Li Q; Gan M; Jiang H; Qin W; Liu X; Hu Y; Qiu G
    Colloids Surf B Biointerfaces; 2015 Feb; 126():351-7. PubMed ID: 25511439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization and Mechanisms of Tannic Acid as a Depressant for Chalcopyrite and Pyrite Separation.
    Sun D; Li M; Zhang M; Cui R; Yang Z; Yu L; Wang D; Yao W
    ACS Omega; 2023 Aug; 8(33):30474-30482. PubMed ID: 37636951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomining with bacteriophage: selectivity of displayed peptides for naturally occurring sphalerite and chalcopyrite.
    Curtis SB; Hewitt J; Macgillivray RT; Dunbar WS
    Biotechnol Bioeng; 2009 Feb; 102(2):644-50. PubMed ID: 18767194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning force microscopy studies of the colonization and growth of A. ferrooxidans on the surface of pyrite minerals.
    Pace DL; Mielke RE; Southam G; Porter TL
    Scanning; 2005; 27(3):136-40. PubMed ID: 15934505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferric iron uptake genes are differentially expressed in the presence of copper sulfides in Acidithiobacillus ferrooxidans strain LR.
    Ferraz LF; Verde LC; Vicentini R; Felício AP; Ribeiro ML; Alexandrino F; Novo MT; Garcia O; Rigden DJ; Ottoboni LM
    Antonie Van Leeuwenhoek; 2011 Mar; 99(3):609-17. PubMed ID: 21132364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides.
    Chopard A; Plante B; Benzaazoua M; Bouzahzah H; Marion P
    Chemosphere; 2017 Jan; 166():281-291. PubMed ID: 27705822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.