BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15342080)

  • 1. Influence of harvest and storage conditions on trichothecenes levels in various cereals.
    Schrödter R
    Toxicol Lett; 2004 Oct; 153(1):47-9. PubMed ID: 15342080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of processing on trichothecene levels.
    Hazel CM; Patel S
    Toxicol Lett; 2004 Oct; 153(1):51-9. PubMed ID: 15342081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of agricultural practices on fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins.
    Edwards SG
    Toxicol Lett; 2004 Oct; 153(1):29-35. PubMed ID: 15342078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-harvest control strategies: minimizing mycotoxins in the food chain.
    Magan N; Aldred D
    Int J Food Microbiol; 2007 Oct; 119(1-2):131-9. PubMed ID: 17764773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Workshop on trichothecenes with a focus on DON: summary report.
    Larsen JC; Hunt J; Perrin I; Ruckenbauer P
    Toxicol Lett; 2004 Oct; 153(1):1-22. PubMed ID: 15342076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevention strategies for trichothecenes.
    Aldred D; Magan N
    Toxicol Lett; 2004 Oct; 153(1):165-71. PubMed ID: 15342093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycotoxin problem in Africa: current status, implications to food safety and health and possible management strategies.
    Wagacha JM; Muthomi JW
    Int J Food Microbiol; 2008 May; 124(1):1-12. PubMed ID: 18258326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of predictive models for Fusarium head blight and related mycotoxin contamination in wheat.
    Prandini A; Sigolo S; Filippi L; Battilani P; Piva G
    Food Chem Toxicol; 2009 May; 47(5):927-31. PubMed ID: 18634842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection.
    Ilgen P; Hadeler B; Maier FJ; Schäfer W
    Mol Plant Microbe Interact; 2009 Aug; 22(8):899-908. PubMed ID: 19589066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusarium mycotoxins in Lithuanian cereals from the 2004-2005 harvests.
    Mankeviciene A; Butkute B; Dabkevicius Z; Suproniene S
    Ann Agric Environ Med; 2007; 14(1):103-7. PubMed ID: 17655186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of grain storage conditions on the viability of Fusarium and deoxynivalenol production in infested malting barley.
    Beattie S; Schwarz PB; Horsley R; Barr J; Casper HH
    J Food Prot; 1998 Jan; 61(1):103-6. PubMed ID: 9708261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate of trichothecene mycotoxins during the processing: milling and baking.
    Lancova K; Hajslova J; Kostelanska M; Kohoutkova J; Nedelnik J; Moravcova H; Vanova M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 May; 25(5):650-9. PubMed ID: 18473219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The antifungal protein AFP from Aspergillus giganteus prevents secondary growth of different Fusarium species on barley.
    Barakat H; Spielvogel A; Hassan M; El-Desouky A; El-Mansy H; Rath F; Meyer V; Stahl U
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):617-24. PubMed ID: 20217075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for managing Fusarium head blight and deoxynivalenol accumulation in wheat.
    Yuen GY; Schoneweis SD
    Int J Food Microbiol; 2007 Oct; 119(1-2):126-30. PubMed ID: 17716767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain.
    Hope R; Aldred D; Magan N
    Lett Appl Microbiol; 2005; 40(4):295-300. PubMed ID: 15752221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidemiology of Fusarium head blight on small-grain cereals.
    Osborne LE; Stein JM
    Int J Food Microbiol; 2007 Oct; 119(1-2):103-8. PubMed ID: 17716761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hot water treatments on the safety and quality of Fusarium-infected malting barley.
    Kottapalli B; Wolf-Hall CE
    Int J Food Microbiol; 2008 May; 124(2):171-8. PubMed ID: 18472174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain.
    Ramirez ML; Chulze S; Magan N
    Int J Food Microbiol; 2006 Feb; 106(3):291-6. PubMed ID: 16236377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of relative humidity on germination of ascospores and macroconidia of Gibberella zeae and deoxynivalenol production.
    Beyer M; Verreet JA; Ragab WS
    Int J Food Microbiol; 2005 Feb; 98(3):233-40. PubMed ID: 15698684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of rice harvest moisture on kernel damage and milled rice surface free fatty acid levels.
    Parker AM; Proctor A; Eason RL; Jain V
    J Food Sci; 2007 Jan; 72(1):C010-5. PubMed ID: 17995866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.