These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 1534214)
21. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. Potesil D; Petrlova J; Adam V; Vacek J; Klejdus B; Zehnalek J; Trnkova L; Havel L; Kizek R J Chromatogr A; 2005 Aug; 1084(1-2):134-44. PubMed ID: 16114246 [TBL] [Abstract][Full Text] [Related]
22. Complexation of heavy metals by phytochelatins: voltammetric study of the binding of Cd2+ and Zn2+ ions by the phytochelatin (gamma-Glu-Cys)3Gly assisted by multivariate curve resolution. Cruz BH; Díaz-Cruz JM; Ariño C; Esteban M Environ Sci Technol; 2005 Feb; 39(3):778-86. PubMed ID: 15757339 [TBL] [Abstract][Full Text] [Related]
23. Analysis of phytochelatin-cadmium complexes from plant tissue culture using nano-electrospray ionization tandem mass spectrometry and capillary liquid chromatography/electrospray ionization tandem mass spectrometry. Yen TY; Villa JA; DeWitt JG J Mass Spectrom; 1999 Sep; 34(9):930-41. PubMed ID: 10491589 [TBL] [Abstract][Full Text] [Related]
24. Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Courbot M; Diez L; Ruotolo R; Chalot M; Leroy P Appl Environ Microbiol; 2004 Dec; 70(12):7413-7. PubMed ID: 15574943 [TBL] [Abstract][Full Text] [Related]
25. Glutathione-mediated transfer of Cu(I) into phytochelatins. Mehra RK; Mulchandani P Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):697-705. PubMed ID: 7741699 [TBL] [Abstract][Full Text] [Related]
26. Phytochelatin induction, cadmium accumulation, and algal sensitivity to free cadmium ion in Scenedesmus vacuolatus. Le Faucheur S; Behra R; Sigg L Environ Toxicol Chem; 2005 Jul; 24(7):1731-7. PubMed ID: 16050590 [TBL] [Abstract][Full Text] [Related]
27. Resistance to cadmium ions and formation of a cadmium-binding complex in various wild-type yeasts. Inouhe M; Sumiyoshi M; Tohoyama H; Joho M Plant Cell Physiol; 1996 Apr; 37(3):341-6. PubMed ID: 8673342 [TBL] [Abstract][Full Text] [Related]
28. Identification of phytochelatin-related peptides in maize seedlings exposed to cadmium and obtained enzymatically in vitro. Chassaigne H; Vacchina V; Kutchan TM; Zenk MH Phytochemistry; 2001 Apr; 56(7):657-68. PubMed ID: 11314950 [TBL] [Abstract][Full Text] [Related]
29. Thiol and metal contents in periphyton exposed to elevated copper and zinc concentrations: a field and microcosm study. Le Faucheur S; Behra R; Sigg L Environ Sci Technol; 2005 Oct; 39(20):8099-107. PubMed ID: 16295881 [TBL] [Abstract][Full Text] [Related]
30. Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum. Morelli E; Scarano G Mar Environ Res; 2001 Oct; 52(4):383-95. PubMed ID: 11695656 [TBL] [Abstract][Full Text] [Related]
31. Environmental cadmium levels increase phytochelatin and glutathione in lettuce grown in a chelator-buffered nutrient solution. Maier EA; Matthews RD; McDowell JA; Walden RR; Ahner BA J Environ Qual; 2003; 32(4):1356-64. PubMed ID: 12931891 [TBL] [Abstract][Full Text] [Related]
32. Phytochelatin biosynthesis and function in heavy-metal detoxification. Cobbett CS Curr Opin Plant Biol; 2000 Jun; 3(3):211-6. PubMed ID: 10837262 [TBL] [Abstract][Full Text] [Related]
33. Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. Vatamaniuk OK; Mari S; Lu YP; Rea PA J Biol Chem; 2000 Oct; 275(40):31451-9. PubMed ID: 10807919 [TBL] [Abstract][Full Text] [Related]
34. Ag(I)-binding to phytochelatins. Mehra RK; Tran K; Scott GW; Mulchandani P; Saini SS J Inorg Biochem; 1996 Feb; 61(2):125-42. PubMed ID: 8576707 [TBL] [Abstract][Full Text] [Related]
35. Hydroxymethyl-phytochelatins [(gamma-glutamylcysteine)n-serine] are metal-induced peptides of the Poaceae. Klapheck S; Fliegner W; Zimmer I Plant Physiol; 1994 Apr; 104(4):1325-32. PubMed ID: 8016264 [TBL] [Abstract][Full Text] [Related]
36. A role for HEM2 in cadmium tolerance. Hunter TC; Mehra RK J Inorg Biochem; 1998 Mar; 69(4):293-303. PubMed ID: 9654753 [TBL] [Abstract][Full Text] [Related]
37. The capability to synthesize phytochelatins and the presence of constitutive and functional phytochelatin synthases are ancestral (plesiomorphic) characters for basal land plants. Petraglia A; De Benedictis M; Degola F; Pastore G; Calcagno M; Ruotolo R; Mengoni A; Sanità di Toppi L J Exp Bot; 2014 Mar; 65(4):1153-63. PubMed ID: 24449382 [TBL] [Abstract][Full Text] [Related]
38. Reconstitution of stellacyanin as a case of direct Cu(I) transfer between yeast copper thionein and 'blue' copper apoprotein. Hartmann HJ; Morpurgo L; Desideri A; Rotilio G; Weser U FEBS Lett; 1983 Feb; 152(1):94-6. PubMed ID: 6220920 [TBL] [Abstract][Full Text] [Related]
39. Phytochelatins, the heavy metal binding peptides of plants: characterization and sequence determination. Grill E Experientia Suppl; 1987; 52():317-22. PubMed ID: 2959522 [TBL] [Abstract][Full Text] [Related]
40. AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Vatamaniuk OK; Mari S; Lu YP; Rea PA Proc Natl Acad Sci U S A; 1999 Jun; 96(12):7110-5. PubMed ID: 10359847 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]