These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 15342157)

  • 1. A biomechanical model of the effect of subtalar arthroereisis on the adult flexible flat foot.
    Arangio GA; Reinert KL; Salathe EP
    Clin Biomech (Bristol); 2004 Oct; 19(8):847-52. PubMed ID: 15342157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomechanical analysis of the effect of lateral column lengthening calcaneal osteotomy on the flat foot.
    Arangio GA; Chopra V; Voloshin A; Salathe EP
    Clin Biomech (Bristol); 2007 May; 22(4):472-7. PubMed ID: 17210213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomechanical analysis of posterior tibial tendon dysfunction, medial displacement calcaneal osteotomy and flexor digitorum longus transfer in adult acquired flat foot.
    Arangio GA; Salathe EP
    Clin Biomech (Bristol); 2009 May; 24(4):385-90. PubMed ID: 19272682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medial displacement calcaneal osteotomy reduces the excess forces in the medial longitudinal arch of the flat foot.
    Arangio GA; Salathé EP
    Clin Biomech (Bristol); 2001 Jul; 16(6):535-9. PubMed ID: 11427297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Biomechanical mechanisms of overuse injuries of second plantar longitudinal arch in flatfoot].
    Wu LJ; Zhong SZ; Li YK; Zhao WD
    Zhonghua Yi Xue Za Zhi; 2004 Jun; 84(12):1000-4. PubMed ID: 15312534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Extraosseous Talotarsal Stabilization Implants in a Stage II Adult-Acquired Flatfoot Model: A Finite Element Analysis.
    Xu J; Ma X; Wang D; Lu W; Zhu W; Ouyang K; Liu H; Li H; Jiang L
    J Foot Ankle Surg; 2017; 56(5):1058-1064. PubMed ID: 28623061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of subtalar arthroereisis on the tibiotalar contact characteristics in a cadaveric flatfoot model.
    Martinelli N; Marinozzi A; Schulze M; Denaro V; Evers J; Bianchi A; Rosenbaum D
    J Biomech; 2012 Jun; 45(9):1745-8. PubMed ID: 22608168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correcting pediatric flatfoot with subtalar arthroereisis and gastrocnemius recession: a retrospective study.
    Jay RM; Din N
    Foot Ankle Spec; 2013 Apr; 6(2):101-7. PubMed ID: 23263679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of plantar fascia stiffness on the biomechanical responses of the ankle-foot complex.
    Cheung JT; Zhang M; An KN
    Clin Biomech (Bristol); 2004 Oct; 19(8):839-46. PubMed ID: 15342156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robotic cadaveric flatfoot analysis of stance phase.
    Jackson LT; Aubin PM; Cowley MS; Sangeorzan BJ; Ledoux WR
    J Biomech Eng; 2011 May; 133(5):051005. PubMed ID: 21599096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of foot orthoses and valgus bracing on the knee adduction moment and medial joint load during gait.
    Shelburne KB; Torry MR; Steadman JR; Pandy MG
    Clin Biomech (Bristol); 2008 Jul; 23(6):814-21. PubMed ID: 18362043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subtalar arthroereisis in the neurologically normal child.
    Grady JF; Dinnon MW
    Clin Podiatr Med Surg; 2000 Jul; 17(3):443-57, vi. PubMed ID: 10943498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional evaluation of bilateral subtalar arthroereisis for the correction of flexible flatfoot in children: 1-year follow-up.
    Caravaggi P; Lullini G; Berti L; Giannini S; Leardini A
    Gait Posture; 2018 Jul; 64():152-158. PubMed ID: 29909229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness of subtalar arthroereisis with endorthesis for pediatric flexible flat foot: a retrospective cross-sectional study with final follow up at skeletal maturity.
    Indino C; Villafañe JH; D'Ambrosi R; Manzi L; Maccario C; Berjano P; Usuelli FG
    Foot Ankle Surg; 2020 Jan; 26(1):98-104. PubMed ID: 30598422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the validity of modeling the Achilles tendon as having a single insertion site.
    Zifchock RA; Piazza SJ
    Clin Biomech (Bristol); 2004 Mar; 19(3):303-7. PubMed ID: 15003346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of tibialis posterior muscle activation on foot anatomy under axial loading: A biomechanical CT human cadaveric study.
    Dullaert K; Hagen JE; Simons P; Gras F; Gueorguiev B; Richards RG; Klos K
    Foot Ankle Surg; 2017 Dec; 23(4):250-254. PubMed ID: 29202983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics of the first ray part V: The effect of equinus deformity. A 3-dimensional kinematic study on a cadaver model.
    Johnson CH; Christensen JC
    J Foot Ankle Surg; 2005; 44(2):114-20. PubMed ID: 15768359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanics and control of the flat versus normal foot during the stance phase of walking.
    Hunt AE; Smith RM
    Clin Biomech (Bristol); 2004 May; 19(4):391-7. PubMed ID: 15109760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous subtalar fusion: an irreversible complication of subtalar arthroereisis.
    Lui TH
    J Foot Ankle Surg; 2014; 53(5):652-6. PubMed ID: 24846157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in plantar loading between flat and normal feet during different athletic tasks.
    Queen RM; Mall NA; Nunley JA; Chuckpaiwong B
    Gait Posture; 2009 Jun; 29(4):582-6. PubMed ID: 19157878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.