These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 15342468)

  • 1. Met and Hgf signaling controls hypaxial muscle and lateral line development in the zebrafish.
    Haines L; Neyt C; Gautier P; Keenan DG; Bryson-Richardson RJ; Hollway GE; Cole NJ; Currie PD
    Development; 2004 Oct; 131(19):4857-69. PubMed ID: 15342468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hgf/c-met expression and functional analysis during zebrafish embryogenesis.
    Latimer AJ; Jessen JR
    Dev Dyn; 2008 Dec; 237(12):3904-15. PubMed ID: 19035351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-somite rotation generates muscle progenitor cell compartments in the developing zebrafish embryo.
    Hollway GE; Bryson-Richardson RJ; Berger S; Cole NJ; Hall TE; Currie PD
    Dev Cell; 2007 Feb; 12(2):207-19. PubMed ID: 17276339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The zebrafish HGF receptor met controls migration of myogenic progenitor cells in appendicular development.
    Nord H; Dennhag N; Tydinger H; von Hofsten J
    PLoS One; 2019; 14(7):e0219259. PubMed ID: 31287821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and interaction of muscle-related genes in the lamprey imply the evolutionary scenario for vertebrate skeletal muscle, in association with the acquisition of the neck and fins.
    Kusakabe R; Kuraku S; Kuratani S
    Dev Biol; 2011 Feb; 350(1):217-27. PubMed ID: 21035440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and comparative genomics of two serum response factor genes in zebrafish.
    Davis JL; Long X; Georger MA; Scott IC; Rich A; Miano JM
    Int J Dev Biol; 2008; 52(4):389-96. PubMed ID: 18415940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning.
    Crump JG; Maves L; Lawson ND; Weinstein BM; Kimmel CB
    Development; 2004 Nov; 131(22):5703-16. PubMed ID: 15509770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel regulatory sequence -82/-62 functions as a key element to drive the somite-specificity of zebrafish myf-5.
    Chen YH; Lee HC; Liu CF; Lin CY; Tsai HJ
    Dev Dyn; 2003 Sep; 228(1):41-50. PubMed ID: 12950078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis.
    Gupta S; Zhu H; Zon LI; Evans T
    Development; 2006 Jun; 133(11):2177-87. PubMed ID: 16672337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and functional role of hepatocyte growth factor and its receptor (c-met) during fetal mouse testis development.
    Ricci G; Catizone A; Galdieri M
    J Endocrinol; 2006 Dec; 191(3):559-70. PubMed ID: 17170214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Six1a is required for the onset of fast muscle differentiation in zebrafish.
    Bessarab DA; Chong SW; Srinivas BP; Korzh V
    Dev Biol; 2008 Nov; 323(2):216-28. PubMed ID: 18789916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle precursor cell movements in zebrafish are dynamic and require Six family genes.
    Talbot JC; Teets EM; Ratnayake D; Duy PQ; Currie PD; Amacher SL
    Development; 2019 May; 146(10):. PubMed ID: 31023879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrinalpha5 and delta/notch signaling have complementary spatiotemporal requirements during zebrafish somitogenesis.
    Jülich D; Geisler R; Holley SA;
    Dev Cell; 2005 Apr; 8(4):575-86. PubMed ID: 15809039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laminin alpha5 is essential for the formation of the zebrafish fins.
    Webb AE; Sanderford J; Frank D; Talbot WS; Driever W; Kimelman D
    Dev Biol; 2007 Nov; 311(2):369-82. PubMed ID: 17919534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myogenic regulatory factors Myf5 and Myod function distinctly during craniofacial myogenesis of zebrafish.
    Lin CY; Yung RF; Lee HC; Chen WT; Chen YH; Tsai HJ
    Dev Biol; 2006 Nov; 299(2):594-608. PubMed ID: 17007832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The epaxial-hypaxial subdivision of the avian somite.
    Cheng L; Alvares LE; Ahmed MU; El-Hanfy AS; Dietrich S
    Dev Biol; 2004 Oct; 274(2):348-69. PubMed ID: 15385164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knockdown of zebrafish crim1 results in a bent tail phenotype with defects in somite and vascular development.
    Kinna G; Kolle G; Carter A; Key B; Lieschke GJ; Perkins A; Little MH
    Mech Dev; 2006 Apr; 123(4):277-87. PubMed ID: 16524703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ret signalling integrates a craniofacial muscle module during development.
    Knight RD; Mebus K; d'Angelo A; Yokoya K; Heanue T; ; Roehl H
    Development; 2011 May; 138(10):2015-24. PubMed ID: 21490065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction and prepatterning of the zebrafish pectoral fin bud requires axial retinoic acid signaling.
    Gibert Y; Gajewski A; Meyer A; Begemann G
    Development; 2006 Jul; 133(14):2649-59. PubMed ID: 16774994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function of FGF signaling in the developmental process of the median fin fold in zebrafish.
    Abe G; Ide H; Tamura K
    Dev Biol; 2007 Apr; 304(1):355-66. PubMed ID: 17258191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.