These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15342560)

  • 41. Easy parameter identifiability analysis with COPASI.
    Schaber J
    Biosystems; 2012 Dec; 110(3):183-5. PubMed ID: 23041463
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Model-based inference of biochemical parameters and dynamic properties of microbial signal transduction networks.
    Schaber J; Klipp E
    Curr Opin Biotechnol; 2011 Feb; 22(1):109-16. PubMed ID: 20970318
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reconstruction of gene regulatory networks under the finite state linear model.
    Ruklisa D; Brazma A; Viksna J
    Genome Inform; 2005; 16(2):225-36. PubMed ID: 16901105
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Writing and compiling code into biochemistry.
    Shea A; Fett B; Riedel MD; Parhi K
    Pac Symp Biocomput; 2010; ():456-64. PubMed ID: 19908397
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reverse engineering of dynamic networks.
    Stigler B; Jarrah A; Stillman M; Laubenbacher R
    Ann N Y Acad Sci; 2007 Dec; 1115():168-77. PubMed ID: 17925347
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Consistent design schematics for biological systems: standardization of representation in biological engineering.
    Matsuoka Y; Ghosh S; Kitano H
    J R Soc Interface; 2009 Aug; 6 Suppl 4(Suppl 4):S393-404. PubMed ID: 19493898
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inferring gene regulatory networks via nonlinear state-space models and exploiting sparsity.
    Noor A; Serpedin E; Nounou M; Nounou HN
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1203-11. PubMed ID: 22350207
    [TBL] [Abstract][Full Text] [Related]  

  • 48. BioPreDyn-bench: a suite of benchmark problems for dynamic modelling in systems biology.
    Villaverde AF; Henriques D; Smallbone K; Bongard S; Schmid J; Cicin-Sain D; Crombach A; Saez-Rodriguez J; Mauch K; Balsa-Canto E; Mendes P; Jaeger J; Banga JR
    BMC Syst Biol; 2015 Feb; 9():8. PubMed ID: 25880925
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plato's cave algorithm: inferring functional signaling networks from early gene expression shadows.
    Shimoni Y; Fink MY; Choi SG; Sealfon SC
    PLoS Comput Biol; 2010 Jun; 6(6):e1000828. PubMed ID: 20585619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. De novo reconstruction of gene regulatory networks from time series data, an approach based on formal methods.
    Ceccarelli M; Cerulo L; Santone A
    Methods; 2014 Oct; 69(3):298-305. PubMed ID: 24960286
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stochastic transient analysis of biochemical systems and its application to the design of biochemical logic gates.
    Cheng B; Riedel M
    Pac Symp Biocomput; 2009; ():4-14. PubMed ID: 19209692
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of Deep Learning and Deterministic Algorithms for Control Modeling.
    Zhai H; Sands T
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080819
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reverse engineering of gene networks with LASSO and nonlinear basis functions.
    Gustafsson M; Hörnquist M; Lundström J; Björkegren J; Tegnér J
    Ann N Y Acad Sci; 2009 Mar; 1158():265-75. PubMed ID: 19348648
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Algorithmic issues in reverse engineering of protein and gene networks via the modular response analysis method.
    Berman P; Dasgupta B; Sontag E
    Ann N Y Acad Sci; 2007 Dec; 1115():132-41. PubMed ID: 17925351
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A computational method for automated characterization of genetic components.
    Yordanov B; Dalchau N; Grant PK; Pedersen M; Emmott S; Haseloff J; Phillips A
    ACS Synth Biol; 2014 Aug; 3(8):578-88. PubMed ID: 24628037
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series.
    Rubiolo M; Milone DH; Stegmayer G
    Bioinformatics; 2018 Apr; 34(7):1253-1260. PubMed ID: 29182723
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism.
    Nemenman I; Escola GS; Hlavacek WS; Unkefer PJ; Unkefer CJ; Wall ME
    Ann N Y Acad Sci; 2007 Dec; 1115():102-15. PubMed ID: 17925356
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Foundations for the design and implementation of synthetic genetic circuits.
    Slusarczyk AL; Lin A; Weiss R
    Nat Rev Genet; 2012 May; 13(6):406-20. PubMed ID: 22596318
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Replaying the evolutionary tape: biomimetic reverse engineering of gene networks.
    Marbach D; Mattiussi C; Floreano D
    Ann N Y Acad Sci; 2009 Mar; 1158():234-45. PubMed ID: 19348645
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Data requirements of reverse-engineering algorithms.
    Just W
    Ann N Y Acad Sci; 2007 Dec; 1115():142-53. PubMed ID: 17925350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.