BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 15342561)

  • 21. An Eulerian path approach to DNA fragment assembly.
    Pevzner PA; Tang H; Waterman MS
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9748-53. PubMed ID: 11504945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Annotating large genomes with exact word matches.
    Healy J; Thomas EE; Schwartz JT; Wigler M
    Genome Res; 2003 Oct; 13(10):2306-15. PubMed ID: 12975312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How to apply de Bruijn graphs to genome assembly.
    Compeau PE; Pevzner PA; Tesler G
    Nat Biotechnol; 2011 Nov; 29(11):987-91. PubMed ID: 22068540
    [No Abstract]   [Full Text] [Related]  

  • 24. Correcting base-assignment errors in repeat regions of shotgun assembly.
    Zhi D; Keich U; Pevzner P; Heber S; Tang H
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):54-64. PubMed ID: 17277413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facilitated sequence assembly using densely labeled optical DNA barcodes: A combinatorial auction approach.
    Dvirnas A; Pichler C; Stewart CL; Quaderi S; Nyberg LK; Müller V; Kumar Bikkarolla S; Kristiansson E; Sandegren L; Westerlund F; Ambjörnsson T
    PLoS One; 2018; 13(3):e0193900. PubMed ID: 29522539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Turning repeats to advantage: scaffolding genomic contigs using LTR retrotransposons.
    Kalyanaraman A; Aluru S; Schnable PS
    Comput Syst Bioinformatics Conf; 2006; ():167-78. PubMed ID: 17369635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation of nearly identical repeats in shotgun assemblies using defined nucleotide positions, DNPs.
    Tammi MT; Arner E; Britton T; Andersson B
    Bioinformatics; 2002 Mar; 18(3):379-88. PubMed ID: 11934736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repetitive DNA and next-generation sequencing: computational challenges and solutions.
    Treangen TJ; Salzberg SL
    Nat Rev Genet; 2011 Nov; 13(1):36-46. PubMed ID: 22124482
    [TBL] [Abstract][Full Text] [Related]  

  • 29. De novo identification of repeat families in large genomes.
    Price AL; Jones NC; Pevzner PA
    Bioinformatics; 2005 Jun; 21 Suppl 1():i351-8. PubMed ID: 15961478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and annotation of repetitive sequences in fungal genomes.
    Dhillon B; Goodwin SB
    Methods Mol Biol; 2011; 722():33-50. PubMed ID: 21590411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combination of de novo assembly of massive sequencing reads with classical repeat prediction improves identification of repetitive sequences in Schistosoma mansoni.
    Lepesant JM; Roquis D; Emans R; Cosseau C; Arancibia N; Mitta G; Grunau C
    Exp Parasitol; 2012 Apr; 130(4):470-4. PubMed ID: 22381218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BAC sequencing using pooled methods.
    Saski CA; Feltus FA; Parida L; Haiminen N
    Methods Mol Biol; 2015; 1227():55-67. PubMed ID: 25239741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The complex task of choosing a de novo assembly: lessons from fungal genomes.
    Gallo JE; Muñoz JF; Misas E; McEwen JG; Clay OK
    Comput Biol Chem; 2014 Dec; 53 Pt A():97-107. PubMed ID: 25262360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RBR: library-less repeat detection for ESTs.
    Malde K; Schneeberger K; Coward E; Jonassen I
    Bioinformatics; 2006 Sep; 22(18):2232-6. PubMed ID: 16837527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How repetitive are genomes?
    Haubold B; Wiehe T
    BMC Bioinformatics; 2006 Dec; 7():541. PubMed ID: 17187668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PCAP: a whole-genome assembly program.
    Huang X; Wang J; Aluru S; Yang SP; Hillier L
    Genome Res; 2003 Sep; 13(9):2164-70. PubMed ID: 12952883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A sequence-ready BAC contig of the GABAA receptor gene cluster Gabrg1-Gabra2-Gabrb1 on mouse chromosome 5.
    Lengeling A; Wiltshire T; Otmani C; Bucán M
    Genome Res; 1999 Aug; 9(8):732-8. PubMed ID: 10447508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Repetitive elements may comprise over two-thirds of the human genome.
    de Koning AP; Gu W; Castoe TA; Batzer MA; Pollock DD
    PLoS Genet; 2011 Dec; 7(12):e1002384. PubMed ID: 22144907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction of methylation-sensitive partial restriction bacterial artificial chromosome libraries in maize.
    Yu C; Li Z
    Anal Biochem; 2006 Dec; 359(1):141-3. PubMed ID: 17010300
    [No Abstract]   [Full Text] [Related]  

  • 40. Masquerading repeats: paralogous pitfalls of the human genome.
    Eichler EE
    Genome Res; 1998 Aug; 8(8):758-62. PubMed ID: 9724321
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.