These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15342730)

  • 1. The isoazimuthal perception of sounds across distance: a preliminary investigation into the location of the audio egocenter.
    Neelon MF; Brungart DS; Simpson BD
    J Neurosci; 2004 Sep; 24(35):7640-7. PubMed ID: 15342730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A psychophysical evaluation of near-field head-related transfer functions synthesized using a distance variation function.
    Kan A; Jin C; van Schaik A
    J Acoust Soc Am; 2009 Apr; 125(4):2233-42. PubMed ID: 19354399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory localization of nearby sources. II. Localization of a broadband source.
    Brungart DS; Durlach NI; Rabinowitz WM
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):1956-68. PubMed ID: 10530020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial localization of auditory stimuli in human auditory cortex is based on both head-independent and head-centered coordinate systems.
    Schechtman E; Shrem T; Deouell LY
    J Neurosci; 2012 Sep; 32(39):13501-9. PubMed ID: 23015439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound Localization of World and Head-Centered Space in Ferrets.
    Town SM; Bizley JK
    J Neurosci; 2022 Jun; 42(22):4580-4593. PubMed ID: 35501154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal representations of distance in human auditory cortex.
    Kopčo N; Huang S; Belliveau JW; Raij T; Tengshe C; Ahveninen J
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):11019-24. PubMed ID: 22699495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of temporal fine structure and signal envelope on auditory motion perception.
    Warnecke M; Peng ZE; Litovsky RY
    PLoS One; 2020; 15(8):e0238125. PubMed ID: 32822439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial Hearing Difficulties in Reaching Space in Bilateral Cochlear Implant Children Improve With Head Movements.
    Coudert A; Gaveau V; Gatel J; Verdelet G; Salemme R; Farne A; Pavani F; Truy E
    Ear Hear; 2022; 43(1):192-205. PubMed ID: 34225320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional sound localization by human listeners.
    Makous JC; Middlebrooks JC
    J Acoust Soc Am; 1990 May; 87(5):2188-200. PubMed ID: 2348023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A common periodic representation of interaural time differences in mammalian cortex.
    Salminen NH; Jones SJ; Christianson GB; Marquardt T; McAlpine D
    Neuroimage; 2018 Feb; 167():95-103. PubMed ID: 29122721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dynamic-range compression on the spatial attributes of sounds in normal-hearing listeners.
    Wiggins IM; Seeber BU
    Ear Hear; 2012; 33(3):399-410. PubMed ID: 22246139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of head position on the spatial representation of acoustic targets.
    Goossens HH; van Opstal AJ
    J Neurophysiol; 1999 Jun; 81(6):2720-36. PubMed ID: 10368392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus.
    Mullette-Gillman OA; Cohen YE; Groh JM
    J Neurophysiol; 2005 Oct; 94(4):2331-52. PubMed ID: 15843485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binaural model for artificial spatial sound localization based on interaural time delays and movements of the interaural axis.
    Kneip L; Baumann C
    J Acoust Soc Am; 2008 Nov; 124(5):3108-19. PubMed ID: 19045796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory signals evolve from hybrid- to eye-centered coordinates in the primate superior colliculus.
    Lee J; Groh JM
    J Neurophysiol; 2012 Jul; 108(1):227-42. PubMed ID: 22514295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Keeping track of sound objects in space: The contribution of early-stage auditory areas.
    Da Costa S; Clarke S; Crottaz-Herbette S
    Hear Res; 2018 Sep; 366():17-31. PubMed ID: 29643021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of static eye and head position on tone-evoked gaze shifts.
    Van Grootel TJ; Van Wanrooij MM; Van Opstal AJ
    J Neurosci; 2011 Nov; 31(48):17496-504. PubMed ID: 22131411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Judging sound rotation when listeners and sounds rotate: Sound source localization is a multisystem process.
    Yost WA; Zhong X; Najam A
    J Acoust Soc Am; 2015 Nov; 138(5):3293-310. PubMed ID: 26627802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The location-dependent nature of perceptually salient features of the human head-related transfer functions.
    Carlille S; Pralong D
    J Acoust Soc Am; 1994 Jun; 95(6):3445-59. PubMed ID: 8046137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The opponent channel population code of sound location is an efficient representation of natural binaural sounds.
    Młynarski W
    PLoS Comput Biol; 2015 May; 11(5):e1004294. PubMed ID: 25996373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.