BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 1534359)

  • 1. Transport of ferric-aerobactin into the periplasm and cytoplasm of Escherichia coli K12: role of envelope-associated proteins and effect of endogenous siderophores.
    Wooldridge KG; Morrissey JA; Williams PH
    J Gen Microbiol; 1992 Mar; 138(3):597-603. PubMed ID: 1534359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron(III) hydroxamate transport across the cytoplasmic membrane of Escherichia coli.
    Köster W
    Biol Met; 1991; 4(1):23-32. PubMed ID: 1830209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron transport systems of Serratia marcescens.
    Angerer A; Klupp B; Braun V
    J Bacteriol; 1992 Feb; 174(4):1378-87. PubMed ID: 1531225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-affinity iron uptake systems present in Erwinia carotovora subsp. carotovora include the hydroxamate siderophore aerobactin.
    Ishimaru CA; Loper JE
    J Bacteriol; 1992 May; 174(9):2993-3003. PubMed ID: 1569027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping.
    Mademidis A; Killmann H; Kraas W; Flechsler I; Jung G; Braun V
    Mol Microbiol; 1997 Dec; 26(5):1109-23. PubMed ID: 9426146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the aerobactin and ferric hydroxamate uptake systems of Yersinia pestis.
    Forman S; Nagiec MJ; Abney J; Perry RD; Fetherston JD
    Microbiology (Reading); 2007 Jul; 153(Pt 7):2332-2341. PubMed ID: 17600077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. tolQ is required for cloacin DF13 susceptibility in Escherichia coli expressing the aerobactin/cloacin DF13 receptor IutA.
    Thomas JA; Valvano MA
    FEMS Microbiol Lett; 1992 Mar; 70(2):107-11. PubMed ID: 1587457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron, siderophores, and the pursuit of virulence: independence of the aerobactin and enterochelin iron uptake systems in Escherichia coli.
    Williams PH; Carbonetti NH
    Infect Immun; 1986 Mar; 51(3):942-7. PubMed ID: 2936686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro growth of urinary Escherichia coli related to siderophore production.
    Harjai K; Saxena M; Chhibber S; Sharma S
    Folia Microbiol (Praha); 1990; 35(2):149-54. PubMed ID: 2143166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An iron-regulated gene required for utilization of aerobactin as an exogenous siderophore in Vibrio parahaemolyticus.
    Funahashi T; Tanabe T; Aso H; Nakao H; Fujii Y; Okamoto K; Narimatsu S; Yamamoto S
    Microbiology (Reading); 2003 May; 149(Pt 5):1217-1225. PubMed ID: 12724383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Siderophore production by Enterobacter cloacae and a common receptor protein for the uptake of aerobactin and cloacin DF13.
    Van Tiel-Menkveld GJ; Mentjox-Vervuurt JM; Oudega B; de Graaf FK
    J Bacteriol; 1982 May; 150(2):490-7. PubMed ID: 6461633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobactin utilization by Neisseria gonorrhoeae and cloning of a genomic DNA fragment that complements Escherichia coli fhuB mutations.
    West SE; Sparling PF
    J Bacteriol; 1987 Aug; 169(8):3414-21. PubMed ID: 3112120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial iron transport: mechanisms, genetics, and regulation.
    Braun V; Hantke K; Köster W
    Met Ions Biol Syst; 1998; 35():67-145. PubMed ID: 9444760
    [No Abstract]   [Full Text] [Related]  

  • 14. Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12.
    de Lorenzo V; Bindereif A; Paw BH; Neilands JB
    J Bacteriol; 1986 Feb; 165(2):570-8. PubMed ID: 2935523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917.
    Valdebenito M; Crumbliss AL; Winkelmann G; Hantke K
    Int J Med Microbiol; 2006 Dec; 296(8):513-20. PubMed ID: 17008127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic control of hydroxamate-mediated iron uptake in Escherichia coli.
    Kadner RJ; Heller K; Coulton JW; Braun V
    J Bacteriol; 1980 Jul; 143(1):256-64. PubMed ID: 6249788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cloacin receptor of ColV-bearing Escherichia coli is part of the Fe3+-aerobactin transport system.
    Bindereif A; Braun V; Hantke K
    J Bacteriol; 1982 Jun; 150(3):1472-5. PubMed ID: 7042696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosomal genes for ColV plasmid-determined iron(III)-aerobactin transport in Escherichia coli.
    Braun V; Burkhardt R; Schneider R; Zimmermann L
    J Bacteriol; 1982 Aug; 151(2):553-9. PubMed ID: 7047493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in excretion and efficiency of the aerobactin and enterochelin siderophores in a bovine pathogenic strain of Escherichia coli.
    Der Vartanian M
    Infect Immun; 1988 Feb; 56(2):413-8. PubMed ID: 2962945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus.
    Cabrera G; Xiong A; Uebel M; Singh VK; Jayaswal RK
    Appl Environ Microbiol; 2001 Feb; 67(2):1001-3. PubMed ID: 11157278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.