These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 1534381)

  • 1. Effects of inhibitors of ion-motive ATPases on the plasma membrane potential of murine erythroleukemia cells.
    Arcangeli A; Del Bene MR; Becchetti A; Wanke E; Olivotto M
    J Membr Biol; 1992 Mar; 126(2):123-36. PubMed ID: 1534381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of inhibitors of plasma-membrane ATPase on potassium and calcium fluxes, membrane potential and proton motive force in the yeast Saccharomyces cerevisiae.
    Eilam Y; Lavi H; Grossowicz N
    Microbios; 1984; 41(165-166):177-89. PubMed ID: 6099460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma membrane potential of murine erythroleukemia cells: approach to measurement and evidence for cell-density dependence.
    Arcangeli A; Olivotto M
    J Cell Physiol; 1986 Apr; 127(1):17-27. PubMed ID: 3457015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the ouabain-insensitive ATPase activity of rat liver plasma membranes.
    Oertle M; Van Dyke R; Scharschmidt BF
    Arch Int Physiol Biochim; 1984 Aug; 92(2):107-18. PubMed ID: 6208861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a vanadate-sensitive, membrane-bound ATPase in the archaebacterium Methanococcus voltae.
    Dharmavaram RM; Konisky J
    J Bacteriol; 1987 Sep; 169(9):3921-5. PubMed ID: 2957358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ouabain-sensitive K(+)-ATPase in epithelial cells from guinea pig distal colon.
    Watanabe T; Suzuki T; Suzuki Y
    Am J Physiol; 1990 Apr; 258(4 Pt 1):G506-11. PubMed ID: 2139761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The plasma membrane electrical gradient (membrane potential) in Leishmania donovani promastigotes and amastigotes.
    Glaser TA; Utz GL; Mukkada AJ
    Mol Biochem Parasitol; 1992 Mar; 51(1):9-15. PubMed ID: 1533015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunological and functional localization of both F-type and P-type ATPases in cyanobacterial plasma membranes.
    Neisser A; Fromwald S; Schmatzberger A; Peschek GA
    Biochem Biophys Res Commun; 1994 Apr; 200(2):884-92. PubMed ID: 8179623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A plasma membrane Mg2+-ATPase in the cellular slime mold Dictyostelium discoideum.
    Macdonald JI; Weeks G
    Arch Biochem Biophys; 1984 Nov; 235(1):1-7. PubMed ID: 6149729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica.
    Wiangnon K; Raksajit W; Incharoensakdi A
    FEMS Microbiol Lett; 2007 May; 270(1):139-45. PubMed ID: 17302934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of medium amino acids on ouabain-sensitive 86Rb+ -uptake and membrane-potential dependent [3H]tetraphenylphosphonium accumulation in Friend erythroleukemia cells.
    Schaefer A; Munter KH; Rüller S
    Eur J Cell Biol; 1988 Aug; 46(3):453-7. PubMed ID: 3181165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of the Kluyveromyces lactis H+-ATPase by dicyclohexylcarbodiimide: binding stoichiometry and effect of nucleophiles.
    Velázquez I; Martínez F; Pardo JP
    Arch Biochem Biophys; 1997 Oct; 346(2):294-302. PubMed ID: 9343377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic investigation on the temperature dependence and inhibition of corn root plasma membrane ATPase.
    Tu SI; Sliwinski BJ
    Arch Biochem Biophys; 1985 Sep; 241(2):348-55. PubMed ID: 2931048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of inhibitors on the plasma membrane and mitochondrial adenosine triphosphatases of Neurospora crassa.
    Bowman BJ; Mainzer SE; Allen KE; Slayman CW
    Biochim Biophys Acta; 1978 Sep; 512(1):13-28. PubMed ID: 151557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased accumulation of the lipophilic cation tetraphenylphosphonium+ by cyclopiazonic acid-treated renal epithelial cells.
    Riley RT; Norred WP; Dorner JW; Cole RJ
    J Toxicol Environ Health; 1985; 15(6):779-88. PubMed ID: 4057282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient.
    Michel H; Oesterhelt D
    Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling between H+ transport and anaerobic glycolysis in turtle urinary bladder: effect of inhibitors of H+ ATPase.
    Steinmetz PR; Husted RF; Mueller A; Beauwens R
    J Membr Biol; 1981 Mar; 59(1):27-34. PubMed ID: 6264081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane potential changes after infection of monocytes by Toxoplasma gondii.
    Bouchot A; Millot JM; Charpentier S; Bonhomme A; Villena I; Aubert D; Pinon JM
    Int J Parasitol; 2001 Aug; 31(10):1114-20. PubMed ID: 11429176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Proton-potassium exchange in Escherichia coli].
    Durgar'ian SS; Martirosov SM
    Biofizika; 1980; 25(3):469-72. PubMed ID: 6994822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.