BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 15344402)

  • 1. A general form of perfectly matched layers for three-dimensional problems of acoustic scattering in lossless and lossy fluid media.
    Katsibas TK; Antonopoulos CS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Aug; 51(8):964-72. PubMed ID: 15344402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image reconstruction in optoacoustic tomography for dispersive acoustic media.
    La Rivière PJ; Zhang J; Anastasio MA
    Opt Lett; 2006 Mar; 31(6):781-3. PubMed ID: 16544622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional perfectly matched layer for elastic second-order wave equation.
    Li Y; Bou Matar O
    J Acoust Soc Am; 2010 Mar; 127(3):1318-27. PubMed ID: 20329831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography.
    Jiang H; Yuan Z; Gu X
    J Opt Soc Am A Opt Image Sci Vis; 2006 Apr; 23(4):878-88. PubMed ID: 16604770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects.
    Zampolli M; Tesei A; Jensen FB; Malm N; Blottman JB
    J Acoust Soc Am; 2007 Sep; 122(3):1472. PubMed ID: 17927408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-difference time-domain solution of light scattering by an infinite dielectric column immersed in an absorbing medium.
    Sun W; Loeb NG; Tanev S; Videen G
    Appl Opt; 2005 Apr; 44(10):1977-83. PubMed ID: 15813534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method.
    Cox BT; Arridge SR; Köstli KP; Beard PC
    Appl Opt; 2006 Mar; 45(8):1866-75. PubMed ID: 16572706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition.
    Arifler D; Guillaud M; Carraro A; Malpica A; Follen M; Richards-Kortum R
    J Biomed Opt; 2003 Jul; 8(3):484-94. PubMed ID: 12880355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Space Radiation concept for mesh-free semi-analytical technique to model wave fields in complex geometries.
    Banerjee S; Das S; Kundu T; Placko D
    Ultrasonics; 2009 Dec; 49(8):615-22. PubMed ID: 19493555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compact perfectly matched layer algorithm for acoustic simulations in the time domain with smoothed particle hydrodynamic method.
    Yang J; Zhang X; Liu GR; Zhang W
    J Acoust Soc Am; 2019 Jan; 145(1):204. PubMed ID: 30710919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A perfectly matched layer formulation for modeling transient wave propagation in an unbounded fluid-solid medium.
    Assi H; Cobbold RS
    J Acoust Soc Am; 2016 Apr; 139(4):1528. PubMed ID: 27106301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of wave propagation in cancellous bone.
    Padilla F; Bossy E; Haiat G; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e239-43. PubMed ID: 16859723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of convolutional PML absorbing boundary conditions in finite-difference time-domain SAR calculations.
    Laakso I; Ilvonen S; Uusitupa T
    Phys Med Biol; 2007 Dec; 52(23):7183-92. PubMed ID: 18030001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue non-linearity.
    Duck F
    Proc Inst Mech Eng H; 2010; 224(2):155-70. PubMed ID: 20349813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger's perfectly matched layers.
    Sheu YL; Li PC
    J Acoust Soc Am; 2008 Dec; 124(6):3471-80. PubMed ID: 19206776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical absorbing boundary conditions based on a damped wave equation for pseudospectral time-domain acoustic simulations.
    Spa C; Reche-López P; Hernández E
    ScientificWorldJournal; 2014; 2014():285945. PubMed ID: 24737966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perfectly matched layers for frequency-domain integral equation acoustic scattering problems.
    Alles EJ; van Dongen KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1077-86. PubMed ID: 21622063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex coordinate implementation in the curvilinear coordinate method: application to plane-wave diffraction by nonperiodic rough surfaces.
    Edee K; Granet G; Plumey JP
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1097-102. PubMed ID: 17361297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.