BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15344412)

  • 1. Monitoring thermally-induced lesions with supersonic shear imaging.
    Bercoff J; Pernot M; Tanter M; Fink M
    Ultrason Imaging; 2004 Apr; 26(2):71-84. PubMed ID: 15344412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supersonic shear imaging: a new technique for soft tissue elasticity mapping.
    Bercoff J; Tanter M; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Apr; 51(4):396-409. PubMed ID: 15139541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring of thermal therapy based on shear modulus changes: II. Shear wave imaging of thermal lesions.
    Arnal B; Pernot M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Aug; 58(8):1603-11. PubMed ID: 21859579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry.
    Arnal B; Pernot M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):369-78. PubMed ID: 21342822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasibility study.
    Muller M; Gennisson JL; Deffieux T; Tanter M; Fink M
    Ultrasound Med Biol; 2009 Feb; 35(2):219-29. PubMed ID: 19081665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging.
    Gennisson JL; Deffieux T; Macé E; Montaldo G; Fink M; Tanter M
    Ultrasound Med Biol; 2010 May; 36(5):789-801. PubMed ID: 20420970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential attenuation imaging for the characterization of high intensity focused ultrasound lesions.
    Ribault M; Chapelon JY; Cathignol D; Gelet A
    Ultrason Imaging; 1998 Jul; 20(3):160-77. PubMed ID: 9921617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity.
    Deffieux T; Montaldo G; Tanter M; Fink M
    IEEE Trans Med Imaging; 2009 Mar; 28(3):313-22. PubMed ID: 19244004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential ultrasonic imaging for the characterization of lesions induced by high intensity focused ultrasound.
    Zhong H; Wan M; Jiang Y; Wang S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e285-8. PubMed ID: 16844167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging of high-intensity focused ultrasound-induced lesions in soft biological tissue using thermoacoustic tomography.
    Jin X; Xu Y; Wang LV; Fang YR; Zanelli CI; Howard SM
    Med Phys; 2005 Jan; 32(1):5-11. PubMed ID: 15719948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring MR-guided high intensity focused ultrasound therapy using transient supersonic shear wave MR-elastography.
    Ishak O; Breton E; Choquet K; Josset A; Cabras P; Vappou J
    Phys Med Biol; 2023 Jan; 68(3):. PubMed ID: 36595333
    [No Abstract]   [Full Text] [Related]  

  • 12. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging.
    Tanter M; Touboul D; Gennisson JL; Bercoff J; Fink M
    IEEE Trans Med Imaging; 2009 Dec; 28(12):1881-93. PubMed ID: 19423431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation-force technique to monitor lesions during ultrasonic therapy.
    Lizzi FL; Muratore R; Deng CX; Ketterling JA; Alam SK; Mikaelian S; Kalisz A
    Ultrasound Med Biol; 2003 Nov; 29(11):1593-605. PubMed ID: 14654155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging.
    Tanter M; Bercoff J; Athanasiou A; Deffieux T; Gennisson JL; Montaldo G; Muller M; Tardivon A; Fink M
    Ultrasound Med Biol; 2008 Sep; 34(9):1373-86. PubMed ID: 18395961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear wave elasticity imaging based on acoustic radiation force and optical detection.
    Cheng Y; Li R; Li S; Dunsby C; Eckersley RJ; Elson DS; Tang MX
    Ultrasound Med Biol; 2012 Sep; 38(9):1637-45. PubMed ID: 22749816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-aided diagnosis based on quantitative elastographic features with supersonic shear wave imaging.
    Xiao Y; Zeng J; Niu L; Zeng Q; Wu T; Wang C; Zheng R; Zheng H
    Ultrasound Med Biol; 2014 Feb; 40(2):275-86. PubMed ID: 24268454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the effects of reflected waves in transient shear wave elastography.
    Deffieux T; Gennisson JL; Bercoff J; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2032-5. PubMed ID: 21989866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quo vadis elasticity imaging?
    Konofagou EE
    Ultrasonics; 2004 Apr; 42(1-9):331-6. PubMed ID: 15047307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time monitoring of high-intensity focused ultrasound treatment using axial strain and axial-shear strain elastograms.
    Xia R; Thittai AK
    Ultrasound Med Biol; 2014 Mar; 40(3):485-95. PubMed ID: 24361216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.
    Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J
    Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.