These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15344412)

  • 21. Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements.
    Elkateb Hachemi M; Callé S; Remenieras JP
    Ultrasonics; 2006 Dec; 44 Suppl 1():e221-5. PubMed ID: 16843510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography.
    Montaldo G; Tanter M; Bercoff J; Benech N; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):489-506. PubMed ID: 19411209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasonic Shear Wave Elasticity Imaging Sequencing and Data Processing Using a Verasonics Research Scanner.
    Deng Y; Rouze NC; Palmeri ML; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):164-176. PubMed ID: 28092508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A localization method of lesions induced by High Intensity Focused Ultrasound based on acoustic backscatter change.
    Zheng X; Vaezy S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3673-6. PubMed ID: 19163507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The feasibility of elastographic visualization of HIFU-induced thermal lesions in soft tissues. Image-guided high-intensity focused ultrasound.
    Kallel F; Stafford RJ; Price RE; Righetti R; Ophir J; Hazle JD
    Ultrasound Med Biol; 1999 May; 25(4):641-7. PubMed ID: 10386741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal effects generated by high-intensity focused ultrasound beams at normal incidence to a bone surface.
    Nell DM; Myers MR
    J Acoust Soc Am; 2010 Jan; 127(1):549-59. PubMed ID: 20059000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and development of a prototype endocavitary probe for high-intensity focused ultrasound delivery with integrated magnetic resonance imaging.
    Wharton IP; Rivens IH; Ter Haar GR; Gilderdale DJ; Collins DJ; Hand JW; Abel PD; deSouza NM
    J Magn Reson Imaging; 2007 Mar; 25(3):548-56. PubMed ID: 17279503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hyperecho in ultrasound images of HIFU therapy: involvement of cavitation.
    Rabkin BA; Zderic V; Vaezy S
    Ultrasound Med Biol; 2005 Jul; 31(7):947-56. PubMed ID: 15972200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics.
    Sarvazyan AP; Rudenko OV; Swanson SD; Fowlkes JB; Emelianov SY
    Ultrasound Med Biol; 1998 Nov; 24(9):1419-35. PubMed ID: 10385964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
    Guo M; Abbott D; Lu M; Liu H
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated optical coherence tomography and multielement ultrasound transducer probe for shear wave elasticity imaging of moving tissues.
    Karpiouk AB; VanderLaan DJ; Larin KV; Emelianov SY
    J Biomed Opt; 2018 Oct; 23(10):1-7. PubMed ID: 30369107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental studies of the thermal effects associated with radiation force imaging of soft tissue.
    Palmeri ML; Frinkley KD; Nightingale KR
    Ultrason Imaging; 2004 Apr; 26(2):100-14. PubMed ID: 15344414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shear modulus imaging with 2-D transient elastography.
    Sandrin L; Tanter M; Catheline S; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Apr; 49(4):426-35. PubMed ID: 11989698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using the acoustic interference pattern to locate the focus of a high-intensity focused ultrasound (HIFU) transducer.
    Wu CC; Chen CN; Ho MC; Chen WS; Lee PH
    Ultrasound Med Biol; 2008 Jan; 34(1):137-46. PubMed ID: 17720300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved visualization of high-intensity focused ultrasound lesions.
    Silverman RH; Muratore R; Ketterling JA; Mamou J; Coleman DJ; Feleppa EJ
    Ultrasound Med Biol; 2006 Nov; 32(11):1743-51. PubMed ID: 17112960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MR-guided transcranial brain HIFU in small animal models.
    Larrat B; Pernot M; Aubry JF; Dervishi E; Sinkus R; Seilhean D; Marie Y; Boch AL; Fink M; Tanter M
    Phys Med Biol; 2010 Jan; 55(2):365-88. PubMed ID: 20019400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual-mode transducers for ultrasound imaging and thermal therapy.
    Owen NR; Chapelon JY; Bouchoux G; Berriet R; Fleury G; Lafon C
    Ultrasonics; 2010 Feb; 50(2):216-20. PubMed ID: 19758673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.
    Song S; Le NM; Huang Z; Shen T; Wang RK
    Opt Lett; 2015 Nov; 40(21):5007-10. PubMed ID: 26512505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An image-guided high intensity focused ultrasound device for uterine fibroids treatment.
    Chan AH; Fujimoto VY; Moore DE; Martin RW; Vaezy S
    Med Phys; 2002 Nov; 29(11):2611-20. PubMed ID: 12462728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pulse compression technique for simultaneous HIFU surgery and ultrasonic imaging: a preliminary study.
    Jeong JS; Chang JH; Shung KK
    Ultrasonics; 2012 Aug; 52(6):730-9. PubMed ID: 22356771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.