BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 15344453)

  • 1. Adapting Active Shape Models for 3D segmentation of tubular structures in medical images.
    de Bruijne M; van Ginneken B; Viergever MA; Niessen WJ
    Inf Process Med Imaging; 2003 Jul; 18():136-47. PubMed ID: 15344453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation of thrombus in abdominal aortic aneurysms from CTA with nonparametric statistical grey level appearance modeling.
    Olabarriaga SD; Rouet JM; Fradkin M; Breeuwer M; Niessen WJ
    IEEE Trans Med Imaging; 2005 Apr; 24(4):477-85. PubMed ID: 15822806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy.
    Zhou J; Kim S; Jabbour S; Goyal S; Haffty B; Chen T; Levinson L; Metaxas D; Yue NJ
    Med Phys; 2010 Mar; 37(3):1298-308. PubMed ID: 20384267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimal shape and intensity cost path segmentation.
    Seghers D; Loeckx D; Maes F; Vandermeulen D; Suetens P
    IEEE Trans Med Imaging; 2007 Aug; 26(8):1115-29. PubMed ID: 17695131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aortic thrombus segmentation using narrow band active contour model.
    Das B; Mallya Y; Srikanth S; Malladi R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():408-11. PubMed ID: 17945583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometrical methods for level set based abdominal aortic aneurysm thrombus and outer wall 2D image segmentation.
    Zohios C; Kossioris G; Papaharilaou Y
    Comput Methods Programs Biomed; 2012 Aug; 107(2):202-17. PubMed ID: 21880391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A generalized active shape model for segmentation of liver in low-contrast CT volumes.
    Esfandiarkhani M; Foruzan AH
    Comput Biol Med; 2017 Mar; 82():59-70. PubMed ID: 28161593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new deformable model for analysis of X-ray CT images in preclinical studies of mice for polycystic kidney disease.
    Gleason SS; Sari-Sarraf H; Abidi MA; Karakashian O; Morandi F
    IEEE Trans Med Imaging; 2002 Oct; 21(10):1302-9. PubMed ID: 12585712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization and segmentation of aortic endografts using marker detection.
    de Bruijne M; Niessen WJ; Maintz JB; Viergever MA
    IEEE Trans Med Imaging; 2003 Apr; 22(4):473-82. PubMed ID: 12774893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An abdominal aortic aneurysm segmentation method: level set with region and statistical information.
    Zhuge F; Rubin GD; Sun S; Napel S
    Med Phys; 2006 May; 33(5):1440-53. PubMed ID: 16752579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sparse appearance learning based automatic coronary sinus segmentation in CTA.
    Lu S; Huang X; Wang Z; Zheng Y
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):779-87. PubMed ID: 25333190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model.
    Okada T; Shimada R; Sato Y; Hori M; Yokota K; Nakamoto M; Chen YW; Nakamura H; Tamura S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):86-93. PubMed ID: 18051047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A probabilistic model for automatic segmentation of the esophagus in 3-D CT scans.
    Feulner J; Zhou SK; Hammon M; Seifert S; Huber M; Comaniciu D; Hornegger J; Cavallaro A
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1252-64. PubMed ID: 21303741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topo-geometric filtration scheme for geometric active contours and level sets: application to cerebrovascular segmentation.
    Molina-Abril H; Frangi AF
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):755-62. PubMed ID: 25333187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images.
    Shao Y; Gao Y; Wang Q; Yang X; Shen D
    Med Image Anal; 2015 Dec; 26(1):345-56. PubMed ID: 26439938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated software supported versus manual aorto-iliac diameter measurements in CT angiography of patients with abdominal aortic aneurysms: assessment of inter- and intraobserver variation.
    Diehm N; Baumgartner I; Silvestro A; Herrmann P; Triller J; Schmidli J; Do DD; Dinkel HP
    Vasa; 2005 Nov; 34(4):255-61. PubMed ID: 16363281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach for global lung registration using 3D Markov-Gibbs appearance model.
    El-Baz A; Khalifa F; Elnakib A; Nitzken M; Soliman A; McClure P; Abou El-Ghar M; Gimel'farb G
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):114-21. PubMed ID: 23286039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A homotopy-based sparse representation for fast and accurate shape prior modeling in liver surgical planning.
    Wang G; Zhang S; Xie H; Metaxas DN; Gu L
    Med Image Anal; 2015 Jan; 19(1):176-86. PubMed ID: 25461336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions.
    Auer M; Gasser TC
    IEEE Trans Med Imaging; 2010 Apr; 29(4):1022-8. PubMed ID: 20335091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.