These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15344519)

  • 1. Non-verbal development of children with deafness with and without cochlear implants.
    Schlumberger E; Narbona J; Manrique M
    Dev Med Child Neurol; 2004 Sep; 46(9):599-606. PubMed ID: 15344519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Balance Performance of Deaf Children With and Without Cochlear Implants.
    Ebrahimi AA; Movallali G; Jamshidi AA; Haghgoo HA; Rahgozar M
    Acta Med Iran; 2016 Nov; 54(11):737-742. PubMed ID: 28033698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balance sensory organization in children with profound hearing loss and cochlear implants.
    Suarez H; Angeli S; Suarez A; Rosales B; Carrera X; Alonso R
    Int J Pediatr Otorhinolaryngol; 2007 Apr; 71(4):629-37. PubMed ID: 17275927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central auditory development after long-term cochlear implant use.
    Jiwani S; Papsin BC; Gordon KA
    Clin Neurophysiol; 2013 Sep; 124(9):1868-80. PubMed ID: 23680008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.
    Colletti L
    Acta Otolaryngol; 2007 Sep; 127(9):943-6. PubMed ID: 17712673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding minds: early cochlear implantation and the development of theory of mind in children with profound hearing impairment.
    Sundqvist A; Lyxell B; Jönsson R; Heimann M
    Int J Pediatr Otorhinolaryngol; 2014 Mar; 78(3):537-43. PubMed ID: 24485174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cognitive development, reading and prosodic skills in children with cochlear implants.
    Lyxell B; Wass M; Sahlén B; Samuelsson C; Asker-Arnason L; Ibertsson T; Mäki-Torkko E; Larsby B; Hällgren M
    Scand J Psychol; 2009 Oct; 50(5):463-74. PubMed ID: 19778394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children.
    Thai-Van H; Cozma S; Boutitie F; Disant F; Truy E; Collet L
    Clin Neurophysiol; 2007 Mar; 118(3):676-89. PubMed ID: 17223382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Audio-visual integration during speech perception in prelingually deafened Japanese children revealed by the McGurk effect.
    Tona R; Naito Y; Moroto S; Yamamoto R; Fujiwara K; Yamazaki H; Shinohara S; Kikuchi M
    Int J Pediatr Otorhinolaryngol; 2015 Dec; 79(12):2072-8. PubMed ID: 26455920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously.
    Easwar V; Yamazaki H; Deighton M; Papsin B; Gordon K
    J Neurosci; 2017 Mar; 37(9):2349-2361. PubMed ID: 28123078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognitive improvement after cochlear implantation in deaf children with associated disabilities.
    Micheletti S; Accorsi P; Giordano L; Calza S; Nassif N; Barezzani MG; Fazzi E; Redaelli de Zinis LO
    Dev Med Child Neurol; 2020 Dec; 62(12):1429-1436. PubMed ID: 32914885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-modal plasticity in developmental and age-related hearing loss: Clinical implications.
    Glick H; Sharma A
    Hear Res; 2017 Jan; 343():191-201. PubMed ID: 27613397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bilateral input protects the cortex from unilaterally-driven reorganization in children who are deaf.
    Gordon KA; Wong DD; Papsin BC
    Brain; 2013 May; 136(Pt 5):1609-25. PubMed ID: 23576127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory and cognitive development in a partially deaf child with bilateral electro-acoustic stimulation: a case study.
    Seebacher J; Muigg F; Fischer N; Weichbold V; Stephan K; Zorowka P; Bliem HR; Schmutzhard J
    Int J Audiol; 2018 Feb; 57(2):150-155. PubMed ID: 29025322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of implantation age on visual attention skills.
    Yucel E; Derim D
    Int J Pediatr Otorhinolaryngol; 2008 Jun; 72(6):869-77. PubMed ID: 18395272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binaural fusion and listening effort in children who use bilateral cochlear implants: a psychoacoustic and pupillometric study.
    Steel MM; Papsin BC; Gordon KA
    PLoS One; 2015; 10(2):e0117611. PubMed ID: 25668423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilateral cochlear implants in children: Effects of auditory experience and deprivation on auditory perception.
    Litovsky RY; Gordon K
    Hear Res; 2016 Aug; 338():76-87. PubMed ID: 26828740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of early auditory experience on the spatial listening skills of children with bilateral cochlear implants.
    Killan CF; Royle N; Totten CL; Raine CH; Lovett RE
    Int J Pediatr Otorhinolaryngol; 2015 Dec; 79(12):2159-65. PubMed ID: 26520909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The strengths and weaknesses in verbal short-term memory and visual working memory in children with hearing impairment and additional language learning difficulties.
    Willis S; Goldbart J; Stansfield J
    Int J Pediatr Otorhinolaryngol; 2014 Jul; 78(7):1107-14. PubMed ID: 24803399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balance in children with bilateral cochlear implants.
    Eustaquio ME; Berryhill W; Wolfe JA; Saunders JE
    Otol Neurotol; 2011 Apr; 32(3):424-7. PubMed ID: 21358560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.