BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 15344818)

  • 1. Growth and cellular fatty-acid composition of a sulphate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T, grown on n-alkenes.
    Cravo-Laureau C; Hirschler-Réa A; Matheron R; Grossi V
    C R Biol; 2004 Jul; 327(7):687-94. PubMed ID: 15344818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic 1-alkene metabolism by the alkane- and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T.
    Grossi V; Cravo-Laureau C; Méou A; Raphel D; Garzino F; Hirschler-Réa A
    Appl Environ Microbiol; 2007 Dec; 73(24):7882-90. PubMed ID: 17965214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T.
    Cravo-Laureau C; Grossi V; Raphel D; Matheron R; Hirschler-Réa A
    Appl Environ Microbiol; 2005 Jul; 71(7):3458-67. PubMed ID: 16000749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic oxidation of n-alkenes by sulphate-reducing bacteria from the genus Desulfatiferula: n-ketones as potential metabolites.
    Grossi V; Cravo-Laureau C; Rontani JF; Cros M; Hirschler-Réa A
    Res Microbiol; 2011 Nov; 162(9):915-22. PubMed ID: 21810468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium.
    Cravo-Laureau C; Matheron R; Cayol JL; Joulian C; Hirschler-Réa A
    Int J Syst Evol Microbiol; 2004 Jan; 54(Pt 1):77-83. PubMed ID: 14742462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions.
    Aeckersberg F; Rainey FA; Widdel F
    Arch Microbiol; 1998 Oct; 170(5):361-9. PubMed ID: 9818355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mono- and dialkyl glycerol ether lipids in anaerobic bacteria: biosynthetic insights from the mesophilic sulfate reducer Desulfatibacillum alkenivorans PF2803T.
    Grossi V; Mollex D; Vinçon-Laugier A; Hakil F; Pacton M; Cravo-Laureau C
    Appl Environ Microbiol; 2015 May; 81(9):3157-68. PubMed ID: 25724965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01.
    So CM; Young LY
    Appl Environ Microbiol; 1999 Dec; 65(12):5532-40. PubMed ID: 10584014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic oxidation of fatty acids and alkenes by the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus.
    Khelifi N; Grossi V; Hamdi M; Dolla A; Tholozan JL; Ollivier B; Hirschler-Réa A
    Appl Environ Microbiol; 2010 May; 76(9):3057-60. PubMed ID: 20305028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial assimilation of hydrocarbons. II. Fatty acids derived from 1-alkenes.
    Makula R; Finnerty WR
    J Bacteriol; 1968 Jun; 95(6):2108-11. PubMed ID: 5669892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.
    Kniemeyer O; Musat F; Sievert SM; Knittel K; Wilkes H; Blumenberg M; Michaelis W; Classen A; Bolm C; Joye SB; Widdel F
    Nature; 2007 Oct; 449(7164):898-901. PubMed ID: 17882164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfate reduction by a syntrophic propionate-oxidizing bacterium.
    Van Kuijk BL; Stams AJ
    Antonie Van Leeuwenhoek; 1995 Nov; 68(4):293-6. PubMed ID: 8821784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3.
    So CM; Phelps CD; Young LY
    Appl Environ Microbiol; 2003 Jul; 69(7):3892-900. PubMed ID: 12839758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic degradation of sorbic acid by sulfate-reducing and fermenting bacteria: pentanone-2 and isopentanone-2 as byproducts.
    Schnell S; Wondrak C; Wahl G; Schink B
    Biodegradation; 1991; 2(1):33-41. PubMed ID: 1368475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiology. Life on the thermodynamic edge.
    DeLong EF
    Science; 2007 Jul; 317(5836):327-8. PubMed ID: 17641187
    [No Abstract]   [Full Text] [Related]  

  • 16. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum.
    Svetlitshnyi V; Rainey F; Wiegel J
    Int J Syst Bacteriol; 1996 Oct; 46(4):1131-7. PubMed ID: 8863447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin of fatty acids in the hydrocarbon-utilizing microorganism Mycobacterium vaccae.
    King DH; Perry JJ
    Can J Microbiol; 1975 Jan; 21(1):85-9. PubMed ID: 1116040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes.
    Tarpgaard IH; Boetius A; Finster K
    Antonie Van Leeuwenhoek; 2006 Jan; 89(1):109-24. PubMed ID: 16328859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiology and ecology of the sulphate-reducing bacteria.
    Gibson GR
    J Appl Bacteriol; 1990 Dec; 69(6):769-97. PubMed ID: 2286579
    [No Abstract]   [Full Text] [Related]  

  • 20. The ecology and biotechnology of sulphate-reducing bacteria.
    Muyzer G; Stams AJ
    Nat Rev Microbiol; 2008 Jun; 6(6):441-54. PubMed ID: 18461075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.