BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 15345046)

  • 1. Global nucleosome occupancy in yeast.
    Bernstein BE; Liu CL; Humphrey EL; Perlstein EO; Schreiber SL
    Genome Biol; 2004; 5(9):R62. PubMed ID: 15345046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RSC-Associated Subnucleosomes Define MNase-Sensitive Promoters in Yeast.
    Brahma S; Henikoff S
    Mol Cell; 2019 Jan; 73(2):238-249.e3. PubMed ID: 30554944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chromatin-mediated mechanism for specification of conditional transcription factor targets.
    Buck MJ; Lieb JD
    Nat Genet; 2006 Dec; 38(12):1446-51. PubMed ID: 17099712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae.
    Gossett AJ; Lieb JD
    PLoS Genet; 2012; 8(6):e1002771. PubMed ID: 22737086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription.
    Knight B; Kubik S; Ghosh B; Bruzzone MJ; Geertz M; Martin V; Dénervaud N; Jacquet P; Ozkan B; Rougemont J; Maerkl SJ; Naef F; Shore D
    Genes Dev; 2014 Aug; 28(15):1695-709. PubMed ID: 25085421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae.
    Zawadzki KA; Morozov AV; Broach JR
    Mol Biol Cell; 2009 Aug; 20(15):3503-13. PubMed ID: 19494041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-scale identification of nucleosome positions in S. cerevisiae.
    Yuan GC; Liu YJ; Dion MF; Slack MD; Wu LF; Altschuler SJ; Rando OJ
    Science; 2005 Jul; 309(5734):626-30. PubMed ID: 15961632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin Fiber Invasion and Nucleosome Displacement by the Rap1 Transcription Factor.
    Mivelaz M; Cao AM; Kubik S; Zencir S; Hovius R; Boichenko I; Stachowicz AM; Kurat CF; Shore D; Fierz B
    Mol Cell; 2020 Feb; 77(3):488-500.e9. PubMed ID: 31761495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleosome Stability Distinguishes Two Different Promoter Types at All Protein-Coding Genes in Yeast.
    Kubik S; Bruzzone MJ; Jacquet P; Falcone JL; Rougemont J; Shore D
    Mol Cell; 2015 Nov; 60(3):422-34. PubMed ID: 26545077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-resolution atlas of nucleosome occupancy in yeast.
    Lee W; Tillo D; Bray N; Morse RH; Davis RW; Hughes TR; Nislow C
    Nat Genet; 2007 Oct; 39(10):1235-44. PubMed ID: 17873876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different roles for abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene.
    Lascaris RF; Groot E; Hoen PB; Mager WH; Planta RJ
    Nucleic Acids Res; 2000 Mar; 28(6):1390-6. PubMed ID: 10684934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosomes Are Essential for Proper Regulation of a Multigated Promoter in Saccharomyces cerevisiae.
    Yarrington RM; Goodrum JM; Stillman DJ
    Genetics; 2016 Feb; 202(2):551-63. PubMed ID: 26627840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric nucleosomes flank promoters in the budding yeast genome.
    Ramachandran S; Zentner GE; Henikoff S
    Genome Res; 2015 Mar; 25(3):381-90. PubMed ID: 25491770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genomic code for nucleosome positioning.
    Segal E; Fondufe-Mittendorf Y; Chen L; Thåström A; Field Y; Moore IK; Wang JP; Widom J
    Nature; 2006 Aug; 442(7104):772-8. PubMed ID: 16862119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae.
    Yarragudi A; Miyake T; Li R; Morse RH
    Mol Cell Biol; 2004 Oct; 24(20):9152-64. PubMed ID: 15456886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes.
    Westenberger SJ; Cui L; Dharia N; Winzeler E; Cui L
    BMC Genomics; 2009 Dec; 10():610. PubMed ID: 20015349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleosome free regions in yeast promoters result from competitive binding of transcription factors that interact with chromatin modifiers.
    Ozonov EA; van Nimwegen E
    PLoS Comput Biol; 2013; 9(8):e1003181. PubMed ID: 23990766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nucleosome-guided map of transcription factor binding sites in yeast.
    Narlikar L; Gordân R; Hartemink AJ
    PLoS Comput Biol; 2007 Nov; 3(11):e215. PubMed ID: 17997593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rap1-mediated nucleosome displacement can regulate gene expression in senescent cells without impacting the pace of senescence.
    Song S; Perez JV; Svitko W; Ricketts MD; Dean E; Schultz D; Marmorstein R; Johnson FB
    Aging Cell; 2020 Jan; 19(1):e13061. PubMed ID: 31742863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals.
    Field Y; Kaplan N; Fondufe-Mittendorf Y; Moore IK; Sharon E; Lubling Y; Widom J; Segal E
    PLoS Comput Biol; 2008 Nov; 4(11):e1000216. PubMed ID: 18989395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.