These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 15345406)

  • 1. Molecular characterization of CcpA and involvement of this protein in transcriptional regulation of lactate dehydrogenase and pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis.
    Asanuma N; Yoshii T; Hino T
    Appl Environ Microbiol; 2004 Sep; 70(9):5244-51. PubMed ID: 15345406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and transcriptional regulation of the gene encoding pyruvate formate-lyase of a ruminal bacterium, Streptococcus bovis.
    Asanuma N; Iwamoto M; Hino T
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():151-157. PubMed ID: 10206694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the overexpression of fructose-1,6-bisphosphate aldolase on fermentation pattern and transcription of the genes encoding lactate dehydrogenase and pyruvate formate-lyase in a ruminal bacterium, Streptococcus bovis.
    Asanuma N; Yoshii T; Kikuchi M; Hino T
    J Gen Appl Microbiol; 2004 Apr; 50(2):71-8. PubMed ID: 15248145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presence of NAD+-specific glyceraldehyde-3-phosphate dehydrogenase and CcpA-dependent transcription of its gene in the ruminal bacterium Streptococcus bovis.
    Asanuma N; Hino T
    FEMS Microbiol Lett; 2006 Apr; 257(1):17-23. PubMed ID: 16553827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characteristics and transcription of the gene encoding a multifunctional alcohol dehydrogenase in relation to the deactivation of pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis.
    Asanuma N; Yoshii T; Hino T
    Arch Microbiol; 2004 Feb; 181(2):122-8. PubMed ID: 14676990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization and expression of pyruvate formate-lyase-activating enzyme in a ruminal bacterium, Streptococcus bovis.
    Asanuma N; Hino T
    Appl Environ Microbiol; 2002 Jul; 68(7):3352-7. PubMed ID: 12089014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of CcpA on the growth and organic acid production characteristics of ruminal Streptococcus bovis at different pH.
    Jin Y; Wang C; Fan Y; Elmhadi M; Zhang Y; Wang H
    BMC Microbiol; 2021 Dec; 21(1):344. PubMed ID: 34911440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular properties and transcriptional control of the phosphofructokinase and pyruvate kinase genes in a ruminal bacterium, Streptococcus bovis.
    Asanuma N; Kanada K; Hino T
    Anaerobe; 2008 Oct; 14(4):237-41. PubMed ID: 18565772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA.
    Luesink EJ; van Herpen RE; Grossiord BP; Kuipers OP; de Vos WM
    Mol Microbiol; 1998 Nov; 30(4):789-98. PubMed ID: 10094627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of lactose transport, beta-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvate-dependent phosphotransferase system sugar.
    van den Bogaard PT; Kleerebezem M; Kuipers OP; de Vos WM
    J Bacteriol; 2000 Nov; 182(21):5982-9. PubMed ID: 11029416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization and significance of phosphoenolpyruvate carboxykinase in a ruminal bacterium, Streptococcus bovis.
    Asanuma N; Kanada K; Arai Y; Yoshizawa K; Ichikawa T; Hino T
    J Gen Appl Microbiol; 2010 Apr; 56(2):121-7. PubMed ID: 20513959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Glucose and Starch on Lactate Production by Newly Isolated Streptococcus bovis S1 from Saanen Goats.
    Chen L; Luo Y; Wang H; Liu S; Shen Y; Wang M
    Appl Environ Microbiol; 2016 Oct; 82(19):5982-9. PubMed ID: 27474714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon.
    Galinier A; Deutscher J; Martin-Verstraete I
    J Mol Biol; 1999 Feb; 286(2):307-14. PubMed ID: 9973552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis.
    Tanaka K; Iwasaki K; Morimoto T; Matsuse T; Hasunuma T; Takenaka S; Chumsakul O; Ishikawa S; Ogasawara N; Yoshida K
    BMC Microbiol; 2015 Feb; 15():43. PubMed ID: 25880922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome Analysis Reveals Catabolite Control Protein A Regulatory Mechanisms Underlying Glucose-Excess or -Limited Conditions in a Ruminal Bacterium,
    Jin Y; Fan Y; Sun H; Zhang Y; Wang H
    Front Microbiol; 2021; 12():767769. PubMed ID: 34867900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CcpA-dependent and -independent control of beta-galactosidase expression in Streptococcus pneumoniae occurs via regulation of an upstream phosphotransferase system-encoding operon.
    Kaufman GE; Yother J
    J Bacteriol; 2007 Jul; 189(14):5183-92. PubMed ID: 17496092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolite regulation of the cytochrome c550-encoding Bacillus subtilis cccA gene.
    Monedero V; Boël G; Deutscher J
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):433-8. PubMed ID: 11361075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum.
    Muscariello L; Marasco R; De Felice M; Sacco M
    Appl Environ Microbiol; 2001 Jul; 67(7):2903-7. PubMed ID: 11425700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in glycolytic activity of Lactococcus lactis induced by low temperature.
    Wouters JA; Kamphuis HH; Hugenholtz J; Kuipers OP; de Vos WM; Abee T
    Appl Environ Microbiol; 2000 Sep; 66(9):3686-91. PubMed ID: 10966377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.