These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15345531)

  • 1. Michaelis-Menten kinetics under spatially constrained conditions: application to mibefradil pharmacokinetics.
    Kosmidis K; Karalis V; Argyrakis P; Macheras P
    Biophys J; 2004 Sep; 87(3):1498-506. PubMed ID: 15345531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractal michaelis-menten kinetics under steady state conditions: Application to mibefradil.
    Marsh RE; Tuszyński JA
    Pharm Res; 2006 Dec; 23(12):2760-7. PubMed ID: 17063399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation.
    Berry H
    Biophys J; 2002 Oct; 83(4):1891-901. PubMed ID: 12324410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulations of enzymatic reactions in crowded media. Effect of the enzyme-obstacle relative size.
    Pitulice L; Vilaseca E; Pastor I; Madurga S; Garcés JL; Isvoran A; Mas F
    Math Biosci; 2014 May; 251():72-82. PubMed ID: 24680707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractal pharmacokinetics of the drug mibefradil in the liver.
    Fuite J; Marsh R; Tuszyński J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021904. PubMed ID: 12241211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifractality in intracellular enzymatic reactions.
    Aranda JS; Salgado E; Muñoz-Diosdado A
    J Theor Biol; 2006 May; 240(2):209-17. PubMed ID: 16256143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling fractal-like drug elimination kinetics using an interacting random-walk model.
    Marsh RE; Riauka TA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031902. PubMed ID: 17500721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass transport subject to time-dependent flow with nonuniform sorption in porous media.
    Néel MC; Zoia A; Joelson M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056301. PubMed ID: 20365067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of modified Michaelis - Menten equations for determination of enzyme inducing and inhibiting drugs.
    Saganuwan SA
    BMC Pharmacol Toxicol; 2021 Oct; 22(1):57. PubMed ID: 34635182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unravelling the impact of obstacles in diffusion and kinetics of an enzyme catalysed reaction.
    Mourão M; Kreitman D; Schnell S
    Phys Chem Chem Phys; 2014 Mar; 16(10):4492-503. PubMed ID: 24141265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microscopic model of enzyme kinetics.
    Gentry R; Ye L; Nemerson Y
    Biophys J; 1995 Aug; 69(2):356-61. PubMed ID: 8527648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction diffusion model of the enzymatic erosion of insoluble fibrillar matrices.
    Tzafriri AR; Bercovier M; Parnas H
    Biophys J; 2002 Aug; 83(2):776-93. PubMed ID: 12124264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Michaelis-Menten mechanism reconsidered: implications of fractal kinetics.
    Savageau MA
    J Theor Biol; 1995 Sep; 176(1):115-24. PubMed ID: 7475096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of fractal kinetics on molecular recognition.
    Savageau MA
    J Mol Recognit; 1993 Dec; 6(4):149-57. PubMed ID: 7917410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of basic principles of fractals and their application to pharmacokinetics.
    Marsh RE; Riauka TA; McQuarrie SA
    Q J Nucl Med Mol Imaging; 2008 Sep; 52(3):278-88. PubMed ID: 18551095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractal kinetic analysis of the enzymatic saccharification of cellulose under different conditions.
    Wang Z; Feng H
    Bioresour Technol; 2010 Oct; 101(20):7995-8000. PubMed ID: 20542686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Michaelis-Menten equation for degradation of insoluble substrate.
    Andersen M; Kari J; Borch K; Westh P
    Math Biosci; 2018 Feb; 296():93-97. PubMed ID: 29197509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule Michaelis-Menten equations.
    Kou SC; Cherayil BJ; Min W; English BP; Xie XS
    J Phys Chem B; 2005 Oct; 109(41):19068-81. PubMed ID: 16853459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic constraints for formation of steady states in biochemical networks.
    Liu J
    Biophys J; 2005 May; 88(5):3212-23. PubMed ID: 15731381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition.
    Vlad MO; Ross J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061908. PubMed ID: 12513319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.