These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 15345536)
1. Continuum diffusion reaction rate calculations of wild-type and mutant mouse acetylcholinesterase: adaptive finite element analysis. Song Y; Zhang Y; Bajaj CL; Baker NA Biophys J; 2004 Sep; 87(3):1558-66. PubMed ID: 15345536 [TBL] [Abstract][Full Text] [Related]
2. Finite element analysis of the time-dependent Smoluchowski equation for acetylcholinesterase reaction rate calculations. Cheng Y; Suen JK; Zhang D; Bond SD; Zhang Y; Song Y; Baker NA; Bajaj CL; Holst MJ; McCammon JA Biophys J; 2007 May; 92(10):3397-406. PubMed ID: 17307827 [TBL] [Abstract][Full Text] [Related]
3. Finite element solution of the steady-state Smoluchowski equation for rate constant calculations. Song Y; Zhang Y; Shen T; Bajaj CL; McCammon JA; Baker NA Biophys J; 2004 Apr; 86(4):2017-29. PubMed ID: 15041644 [TBL] [Abstract][Full Text] [Related]
4. Tetrameric mouse acetylcholinesterase: continuum diffusion rate calculations by solving the steady-state Smoluchowski equation using finite element methods. Zhang D; Suen J; Zhang Y; Song Y; Radic Z; Taylor P; Holst MJ; Bajaj C; Baker NA; McCammon JA Biophys J; 2005 Mar; 88(3):1659-65. PubMed ID: 15626705 [TBL] [Abstract][Full Text] [Related]
5. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. Lu B; Zhou YC; Huber GA; Bond SD; Holst MJ; McCammon JA J Chem Phys; 2007 Oct; 127(13):135102. PubMed ID: 17919055 [TBL] [Abstract][Full Text] [Related]
6. Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge. Tara S; Elcock AH; Kirchhoff PD; Briggs JM; Radic Z; Taylor P; McCammon JA Biopolymers; 1998 Dec; 46(7):465-74. PubMed ID: 9838872 [TBL] [Abstract][Full Text] [Related]
7. Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach. Zhou YC; Lu B; Huber GA; Holst MJ; McCammon JA J Phys Chem B; 2008 Jan; 112(2):270-5. PubMed ID: 18052268 [TBL] [Abstract][Full Text] [Related]
8. Correlation between rate of enzyme-substrate diffusional encounter and average Boltzmann factor around active site. Zhou HX; Briggs JM; Tara S; McCammon JA Biopolymers; 1998 Apr; 45(5):355-60. PubMed ID: 9530014 [TBL] [Abstract][Full Text] [Related]
9. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics. Pan W; Daily M; Baker NA BMC Biophys; 2015; 8():7. PubMed ID: 25995835 [TBL] [Abstract][Full Text] [Related]
10. Acetylcholinesterase: mechanisms of covalent inhibition of wild-type and H447I mutant determined by computational analyses. Cheng Y; Cheng X; Radić Z; McCammon JA J Am Chem Soc; 2007 May; 129(20):6562-70. PubMed ID: 17461584 [TBL] [Abstract][Full Text] [Related]
11. Electrostatic potentials of proteins in water: a structured continuum approach. Hildebrandt A; Blossey R; Rjasanow S; Kohlbacher O; Lenhof HP Bioinformatics; 2007 Jan; 23(2):e99-103. PubMed ID: 17237112 [TBL] [Abstract][Full Text] [Related]
12. Analysis of synaptic transmission in the neuromuscular junction using a continuum finite element model. Smart JL; McCammon JA Biophys J; 1998 Oct; 75(4):1679-88. PubMed ID: 9746510 [TBL] [Abstract][Full Text] [Related]
13. Acetylcholinesterase: diffusional encounter rate constants for dumbbell models of ligand. Antosiewicz J; Gilson MK; Lee IH; McCammon JA Biophys J; 1995 Jan; 68(1):62-8. PubMed ID: 7711269 [TBL] [Abstract][Full Text] [Related]
14. Pathways of ligand clearance in acetylcholinesterase by multiple copy sampling. Van Belle D; De Maria L; Iurcu G; Wodak SJ J Mol Biol; 2000 May; 298(4):705-26. PubMed ID: 10788331 [TBL] [Abstract][Full Text] [Related]
15. Electroanalysis of amino acid substitutions in bioengineered acetylcholinesterase. Somji M; Dounin V; Muench SB; Schulze H; Bachmann TT; Kerman K Bioelectrochemistry; 2012 Dec; 88():110-3. PubMed ID: 22889677 [TBL] [Abstract][Full Text] [Related]
16. Influence of the water structure on the acetylcholinesterase efficiency. Ramos AS; Techert S Biophys J; 2005 Sep; 89(3):1990-2003. PubMed ID: 15994894 [TBL] [Abstract][Full Text] [Related]
17. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates. Kovarik Z; Radić Z; Berman HA; Simeon-Rudolf V; Reiner E; Taylor P Biochem J; 2003 Jul; 373(Pt 1):33-40. PubMed ID: 12665427 [TBL] [Abstract][Full Text] [Related]
18. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate. Johnson JL; Cusack B; Davies MP; Fauq A; Rosenberry TL Biochemistry; 2003 May; 42(18):5438-52. PubMed ID: 12731886 [TBL] [Abstract][Full Text] [Related]
19. Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylated conjugates. Kovarik Z; Radić Z; Berman HA; Simeon-Rudolf V; Reiner E; Taylor P Biochemistry; 2004 Mar; 43(11):3222-9. PubMed ID: 15023072 [TBL] [Abstract][Full Text] [Related]