These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15345551)

  • 1. The 4,5-double bond of ceramide regulates its dipole potential, elastic properties, and packing behavior.
    Brockman HL; Momsen MM; Brown RE; He L; Chun J; Byun HS; Bittman R
    Biophys J; 2004 Sep; 87(3):1722-31. PubMed ID: 15345551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational characterization of ceramides by nuclear magnetic resonance spectroscopy.
    Li L; Tang X; Taylor KG; DuPré DB; Yappert MC
    Biophys J; 2002 Apr; 82(4):2067-80. PubMed ID: 11916863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics.
    Školová B; Kováčik A; Tesař O; Opálka L; Vávrová K
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):824-834. PubMed ID: 28109750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Hydroxylation, Chain Length, and Chain Unsaturation on Bilayer Properties of Ceramides.
    Maula T; Al Sazzad MA; Slotte JP
    Biophys J; 2015 Oct; 109(8):1639-51. PubMed ID: 26488655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of the sphingosine base double-bond geometry for the structural and thermodynamic properties of sphingomyelin bilayers.
    Janosi L; Gorfe A
    Biophys J; 2010 Nov; 99(9):2957-66. PubMed ID: 21044593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ceramide N-acyl chain length: a determinant of bidimensional transitions, condensed domain morphology, and interfacial thickness.
    Dupuy F; Fanani ML; Maggio B
    Langmuir; 2011 Apr; 27(7):3783-91. PubMed ID: 21355583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of chain length and unsaturation on sphingomyelin bilayers.
    Niemelä PS; Hyvönen MT; Vattulainen I
    Biophys J; 2006 Feb; 90(3):851-63. PubMed ID: 16284257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrophobic mismatch determines the miscibility of ceramides in lipid monolayers.
    Dupuy F; Maggio B
    Chem Phys Lipids; 2012 Sep; 165(6):615-29. PubMed ID: 22781205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular-dynamics simulation of a ceramide bilayer.
    Pandit SA; Scott HL
    J Chem Phys; 2006 Jan; 124(1):14708. PubMed ID: 16409052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of hydrogen bonding in sphingomyelin's membrane interactions with co-lipids.
    Slotte JP
    Biochim Biophys Acta; 2016 Feb; 1858(2):304-10. PubMed ID: 26656158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FTIR spectroscopic studies of lipid dynamics in phytosphingosine ceramide models of the stratum corneum lipid matrix.
    Rerek ME; Van Wyck D; Mendelsohn R; Moore DJ
    Chem Phys Lipids; 2005 Mar; 134(1):51-8. PubMed ID: 15752463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sphingosine 2N- and 3O-methylation on palmitoyl ceramide properties in bilayer membranes.
    Maula T; Kurita M; Yamaguchi S; Yamamoto T; Katsumura S; Slotte JP
    Biophys J; 2011 Dec; 101(12):2948-56. PubMed ID: 22208193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes.
    Janůšová B; Zbytovská J; Lorenc P; Vavrysová H; Palát K; Hrabálek A; Vávrová K
    Biochim Biophys Acta; 2011 Mar; 1811(3):129-37. PubMed ID: 21167310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of an ordered phase by ceramides and diacylglycerols in a fluid phosphatidylcholine bilayer--Correlation with structure and hydrogen bonding capacity.
    Ekman P; Maula T; Yamaguchi S; Yamamoto T; Nyholm TK; Katsumura S; Slotte JP
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2111-7. PubMed ID: 26116433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative investigation of sphingoid bases and fatty acids in ceramides and sphingomyelins from human ovarian malignant tumors and normal ovary.
    Rylova SN; Somova OG; Dyatlovitskaya EV
    Biochemistry (Mosc); 1998 Sep; 63(9):1057-60. PubMed ID: 9795275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial interactions of ceramide with dimyristoylphosphatidylcholine: impact of the N-acyl chain.
    Holopainen JM; Brockman HL; Brown RE; Kinnunen PK
    Biophys J; 2001 Feb; 80(2):765-75. PubMed ID: 11159444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of double bond geometry in sphingosine base on the antioxidant function of sphingomyelin.
    Subbaiah PV; Sircar D; Lankalapalli RS; Bittman R
    Arch Biochem Biophys; 2009 Jan; 481(1):72-9. PubMed ID: 18952047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acyl chain length affects ceramide action on sterol/sphingomyelin-rich domains.
    Nybond S; Björkqvist YJ; Ramstedt B; Slotte JP
    Biochim Biophys Acta; 2005 Dec; 1718(1-2):61-6. PubMed ID: 16321609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Long-Chain Sphingoid Base of Ceramides Determines Their Propensity for Lateral Segregation.
    Al Sazzad MA; Yasuda T; Murata M; Slotte JP
    Biophys J; 2017 Mar; 112(5):976-983. PubMed ID: 28297656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids.
    Goñi FM; Alonso A
    Biochim Biophys Acta; 2006 Dec; 1758(12):1902-21. PubMed ID: 17070498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.