These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 15345563)
1. Contrasting the excited-state dynamics of the photoactive yellow protein chromophore: protein versus solvent environments. Vengris M; van der Horst MA; Zgrablic G; van Stokkum IH; Haacke S; Chergui M; Hellingwerf KJ; van Grondelle R; Larsen DS Biophys J; 2004 Sep; 87(3):1848-57. PubMed ID: 15345563 [TBL] [Abstract][Full Text] [Related]
2. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer. Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794 [TBL] [Abstract][Full Text] [Related]
3. pH Dependence of the photocycle kinetics of the E46Q mutant of photoactive yellow protein: protonation equilibrium between I1 and I2 intermediates, chromophore deprotonation by hydroxyl uptake, and protonation relaxation of the dark state. Borucki B; Otto H; Joshi CP; Gasperi C; Cusanovich MA; Devanathan S; Tollin G; Heyn MP Biochemistry; 2003 Jul; 42(29):8780-90. PubMed ID: 12873139 [TBL] [Abstract][Full Text] [Related]
4. Ultrafast dynamics of isolated model photoactive yellow protein chromophores: "Chemical perturbation theory" in the laboratory. Vengris M; Larsen DS; van der Horst MA; Larsen OF; Hellingwerf KJ; van Grondelle R J Phys Chem B; 2005 Mar; 109(9):4197-208. PubMed ID: 16851482 [TBL] [Abstract][Full Text] [Related]
5. Ultrafast light-induced response of photoactive yellow protein chromophore analogues. Espagne A; Paik DH; Changenet-Barret P; Plaza P; Martin MM; Zewail AH Photochem Photobiol Sci; 2007 Jul; 6(7):780-7. PubMed ID: 17609772 [TBL] [Abstract][Full Text] [Related]
6. Picosecond protein response to the chromophore isomerization of photoactive yellow protein: selective observation of tyrosine and tryptophan residues by time-resolved ultraviolet resonance Raman spectroscopy. Mizuno M; Hamada N; Tokunaga F; Mizutani Y J Phys Chem B; 2007 Jun; 111(23):6293-6. PubMed ID: 17523627 [TBL] [Abstract][Full Text] [Related]
7. Ultrafast hydrogen-bonding dynamics in the electronic excited state of photoactive yellow protein revealed by femtosecond stimulated Raman spectroscopy. Nakamura R; Hamada N; Abe K; Yoshizawa M J Phys Chem B; 2012 Dec; 116(51):14768-75. PubMed ID: 23210980 [TBL] [Abstract][Full Text] [Related]
8. Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump-dump-probe spectroscopy. Larsen DS; van Stokkum IH; Vengris M; van Der Horst MA; de Weerd FL; Hellingwerf KJ; van Grondelle R Biophys J; 2004 Sep; 87(3):1858-72. PubMed ID: 15345564 [TBL] [Abstract][Full Text] [Related]
9. Coherent oscillations in ultrafast fluorescence of photoactive yellow protein. Nakamura R; Hamada N; Ichida H; Tokunaga F; Kanematsu Y J Chem Phys; 2007 Dec; 127(21):215102. PubMed ID: 18067379 [TBL] [Abstract][Full Text] [Related]
10. Ultrafast fluorescence upconversion technique and its applications to proteins. Chosrowjan H; Taniguchi S; Tanaka F FEBS J; 2015 Aug; 282(16):3003-15. PubMed ID: 25532707 [TBL] [Abstract][Full Text] [Related]
11. Strong hydrogen bond between glutamic acid 46 and chromophore leads to the intermediate spectral form and excited state proton transfer in the Y42F mutant of the photoreceptor photoactive yellow protein. Joshi CP; Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP Biochemistry; 2009 Oct; 48(42):9980-93. PubMed ID: 19764818 [TBL] [Abstract][Full Text] [Related]
12. Ultrafast dynamics of photoactive yellow protein via the photoexcitation and emission processes. Nakamura R; Hamada N; Ichida H; Tokunaga F; Kanematsu Y Photochem Photobiol; 2007; 83(2):397-402. PubMed ID: 17576348 [TBL] [Abstract][Full Text] [Related]
13. Absorption spectra of photoactive yellow protein chromophores in vacuum. Nielsen IB; Boyé-Péronne S; El Ghazaly MO; Kristensen MB; Brøndsted Nielsen S; Andersen LH Biophys J; 2005 Oct; 89(4):2597-604. PubMed ID: 16040745 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of protein and chromophore structural changes in the photocycle of photoactive yellow protein monitored by time-resolved optical rotatory dispersion. Chen E; Gensch T; Gross AB; Hendriks J; Hellingwerf KJ; Kliger DS Biochemistry; 2003 Feb; 42(7):2062-71. PubMed ID: 12590594 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen bonding controls excited-state decay of the photoactive yellow protein chromophore. Boggio-Pasqua M; Robb MA; Groenhof G J Am Chem Soc; 2009 Sep; 131(38):13580-1. PubMed ID: 19728705 [TBL] [Abstract][Full Text] [Related]
16. Unveiling the mechanism of photoinduced isomerization of the photoactive yellow protein (PYP) chromophore. Gromov EV J Chem Phys; 2014 Dec; 141(22):224308. PubMed ID: 25494750 [TBL] [Abstract][Full Text] [Related]
17. Short hydrogen bonds and negative charge in photoactive yellow protein promote fast isomerization but not high quantum yield. Zhu J; Vreede J; Hospes M; Arents J; Kennis JT; van Stokkum IH; Hellingwerf KJ; Groot ML J Phys Chem B; 2015 Feb; 119(6):2372-83. PubMed ID: 25144816 [TBL] [Abstract][Full Text] [Related]
18. Spectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface. Philip AF; Nome RA; Papadantonakis GA; Scherer NF; Hoff WD Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5821-6. PubMed ID: 20220103 [TBL] [Abstract][Full Text] [Related]
19. Vibrational energy flow in photoactive yellow protein revealed by infrared pump-visible probe spectroscopy. Nakamura R; Hamada N J Phys Chem B; 2015 May; 119(19):5957-61. PubMed ID: 25896223 [TBL] [Abstract][Full Text] [Related]
20. Quantum dynamics of electronic excitations in biomolecular chromophores: role of the protein environment and solvent. Gilmore J; McKenzie RH J Phys Chem A; 2008 Mar; 112(11):2162-76. PubMed ID: 18293949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]