BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15345748)

  • 1. Reducing chloride conductance prevents hyperkalaemia-induced loss of twitch force in rat slow-twitch muscle.
    van Emst MG; Klarenbeek S; Schot A; Plomp JJ; Doornenbal A; Everts ME
    J Physiol; 2004 Nov; 561(Pt 1):169-81. PubMed ID: 15345748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of chloride transport on bistable behaviour of the membrane potential in mouse skeletal muscle.
    Geukes Foppen RJ; van Mil HG; van Heukelom JS
    J Physiol; 2002 Jul; 542(Pt 1):181-91. PubMed ID: 12096060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of transverse-tubular chloride conductance on excitability in skinned skeletal muscle fibres of rat and toad.
    Coonan JR; Lamb GD
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):551-64. PubMed ID: 9575303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained?
    Clausen T
    Exp Physiol; 2011 Mar; 96(3):356-68. PubMed ID: 21123362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased excitability of acidified skeletal muscle: role of chloride conductance.
    Pedersen TH; de Paoli F; Nielsen OB
    J Gen Physiol; 2005 Feb; 125(2):237-46. PubMed ID: 15684096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium-induced potentiation of subtetanic force in rat skeletal muscles: influences of β
    Olesen JH; Herskind J; Pedersen KK; Overgaard K
    Am J Physiol Cell Physiol; 2021 Nov; 321(5):C884-C896. PubMed ID: 34613841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane potential stabilization in amphibian skeletal muscle fibres in hypertonic solutions.
    Ferenczi EA; Fraser JA; Chawla S; Skepper JN; Schwiening CJ; Huang CL
    J Physiol; 2004 Mar; 555(Pt 2):423-38. PubMed ID: 14694151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume regulation in mammalian skeletal muscle: the role of sodium-potassium-chloride cotransporters during exposure to hypertonic solutions.
    Lindinger MI; Leung M; Trajcevski KE; Hawke TJ
    J Physiol; 2011 Jun; 589(Pt 11):2887-99. PubMed ID: 21486779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloride conductance in the transverse tubular system of rat skeletal muscle fibres: importance in excitation-contraction coupling and fatigue.
    Dutka TL; Murphy RM; Stephenson DG; Lamb GD
    J Physiol; 2008 Feb; 586(3):875-87. PubMed ID: 18033812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of bumetanide on the membrane potential of mouse skeletal muscle cells in isotonic and hypertonic media.
    van Mil HG; Geukes Foppen RJ; Siegenbeek van Heukelom J
    Br J Pharmacol; 1997 Jan; 120(1):39-44. PubMed ID: 9117096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevation of extracellular osmolarity improves signs of myotonia congenita in vitro: a preclinical animal study.
    Hoppe K; Chaiklieng S; Lehmann-Horn F; Jurkat-Rott K; Wearing S; Klingler W
    J Physiol; 2019 Jan; 597(1):225-235. PubMed ID: 30284249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NKCC1 activity modulates formation of functional inhibitory synapses in cultured neocortical neurons.
    Nakanishi K; Yamada J; Takayama C; Oohira A; Fukuda A
    Synapse; 2007 Mar; 61(3):138-49. PubMed ID: 17146765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the sodium potassium chloride cotransporter (NKCC1) and sodium chloride cotransporter (NCC) and their effects on rat lens transparency.
    Chee KN; Vorontsova I; Lim JC; Kistler J; Donaldson PJ
    Mol Vis; 2010 May; 16():800-12. PubMed ID: 20458365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of lactic acid and catecholamines on contractility in fast-twitch muscles exposed to hyperkalemia.
    Hansen AK; Clausen T; Nielsen OB
    Am J Physiol Cell Physiol; 2005 Jul; 289(1):C104-12. PubMed ID: 15743886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-K+-Cl- cotransporter (NKCC) maintains the chloride gradient to sustain pacemaker activity in interstitial cells of Cajal.
    Zhu MH; Sung TS; Kurahashi M; O'Kane LE; O'Driscoll K; Koh SD; Sanders KM
    Am J Physiol Gastrointest Liver Physiol; 2016 Dec; 311(6):G1037-G1046. PubMed ID: 27742704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Na(+)-K(+)-2Cl(-) cotransporter isoform 1 accelerates temozolomide-mediated apoptosis in glioblastoma cancer cells.
    Algharabil J; Kintner DB; Wang Q; Begum G; Clark PA; Yang SS; Lin SH; Kahle KT; Kuo JS; Sun D
    Cell Physiol Biochem; 2012; 30(1):33-48. PubMed ID: 22759954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of Na(+)-K(+)-Cl(-) cotransporter to high-[K(+)](o)- induced swelling and EAA release in astrocytes.
    Su G; Kintner DB; Sun D
    Am J Physiol Cell Physiol; 2002 May; 282(5):C1136-46. PubMed ID: 11940529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The peak force-resting membrane potential relationships of mouse fast- and slow-twitch muscle.
    Cairns SP; Leader JP; Higgins A; Renaud JM
    Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1151-C1165. PubMed ID: 35385328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ClC-1 and KATP channels in action potential-firing fast-twitch muscle fibers.
    Pedersen TH; de Paoli FV; Flatman JA; Nielsen OB
    J Gen Physiol; 2009 Oct; 134(4):309-22. PubMed ID: 19786584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-sensitive potassium channels mediate hyperosmotic stimulation of NKCC in slow-twitch muscle.
    Gosmanov AR; Fan Z; Mi X; Schneider EG; Thomason DB
    Am J Physiol Cell Physiol; 2004 Mar; 286(3):C586-95. PubMed ID: 14592811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.