These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 15346131)

  • 1. Neuropathology: the foundation for new treatments in spinal cord injury.
    Kakulas BA
    Spinal Cord; 2004 Oct; 42(10):549-63. PubMed ID: 15346131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neuropathological foundations for the restorative neurology of spinal cord injury.
    Kakulas BA; Kaelan C
    Clin Neurol Neurosurg; 2015 Feb; 129 Suppl 1():S1-7. PubMed ID: 25683305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes.
    Sachdeva R; Theisen CC; Ninan V; Twiss JL; Houlé JD
    Exp Neurol; 2016 Feb; 276():72-82. PubMed ID: 26366525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.
    Collyer E; Catenaccio A; Lemaitre D; Diaz P; Valenzuela V; Bronfman F; Court FA
    Exp Neurol; 2014 Nov; 261():451-61. PubMed ID: 25079366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuropathology of human spinal cord injury sustained in sports-related activities.
    Hayes KC; Kakulas BA
    J Neurotrauma; 1997 Apr; 14(4):235-48. PubMed ID: 9151772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimethylene carbonate-caprolactone conduit with poly-p-dioxanone microfilaments to promote regeneration after spinal cord injury.
    Novikova LN; Kolar MK; Kingham PJ; Ullrich A; Oberhoffner S; Renardy M; Doser M; Müller E; Wiberg M; Novikov LN
    Acta Biomater; 2018 Jan; 66():177-191. PubMed ID: 29174588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The longitudinal spinal cord injury: lessons from intraspinal plexus, cauda equina and medullary conus lesions.
    Carlstedt T; Havton L
    Handb Clin Neurol; 2012; 109():337-54. PubMed ID: 23098723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EPO-releasing neural precursor cells promote axonal regeneration and recovery of function in spinal cord traumatic injury.
    Carelli S; Giallongo T; Gombalova Z; Merli D; Di Giulio AM; Gorio A
    Restor Neurol Neurosci; 2017; 35(6):583-599. PubMed ID: 29172009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord.
    Lai BQ; Che MT; Du BL; Zeng X; Ma YH; Feng B; Qiu XC; Zhang K; Liu S; Shen HY; Wu JL; Ling EA; Zeng YS
    Biomaterials; 2016 Dec; 109():40-54. PubMed ID: 27665078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus.
    Kanno H; Pearse DD; Ozawa H; Itoi E; Bunge MB
    Rev Neurosci; 2015; 26(2):121-8. PubMed ID: 25581750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of the neuropathology of human spinal cord injury with emphasis on special features.
    Kakulas BA
    J Spinal Cord Med; 1999; 22(2):119-24. PubMed ID: 10826269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory afferents regenerated into dorsal columns after spinal cord injury remain in a chronic pathophysiological state.
    Tan AM; Petruska JC; Mendell LM; Levine JM
    Exp Neurol; 2007 Aug; 206(2):257-68. PubMed ID: 17585905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure of Schwann cells as supporting cells for adult neural progenitor cell grafts in the acutely injured spinal cord.
    Vroemen M; Caioni M; Bogdahn U; Weidner N
    Cell Tissue Res; 2007 Jan; 327(1):1-13. PubMed ID: 16941122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine.
    Han S; Xiao Z; Li X; Zhao H; Wang B; Qiu Z; Li Z; Mei X; Xu B; Fan C; Chen B; Han J; Gu Y; Yang H; Shi Q; Dai J
    Sci China Life Sci; 2018 Jan; 61(1):2-13. PubMed ID: 28527111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Descending vasomotor pathways in humans: correlation between axonal preservation and cardiovascular dysfunction after spinal cord injury.
    Furlan JC; Fehlings MG; Shannon P; Norenberg MD; Krassioukov AV
    J Neurotrauma; 2003 Dec; 20(12):1351-63. PubMed ID: 14748983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promoting axonal myelination for improving neurological recovery in spinal cord injury.
    Wu B; Ren X
    J Neurotrauma; 2009 Oct; 26(10):1847-56. PubMed ID: 19785544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local Delivery of High-Dose Chondroitinase ABC in the Sub-Acute Stage Promotes Axonal Outgrowth and Functional Recovery after Complete Spinal Cord Transection.
    Cheng CH; Lin CT; Lee MJ; Tsai MJ; Huang WH; Huang MC; Lin YL; Chen CJ; Huang WC; Cheng H
    PLoS One; 2015; 10(9):e0138705. PubMed ID: 26393921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.
    Hurd C; Weishaupt N; Fouad K
    Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.