These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 15346187)
1. Photocatalytic reduction of aromatic azides to amines using CdS and CdSe nanoparticles. Warrier M; Lo MK; Monbouquette H; Garcia-Garibay MA Photochem Photobiol Sci; 2004 Sep; 3(9):859-63. PubMed ID: 15346187 [TBL] [Abstract][Full Text] [Related]
2. Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila. Hsueh CC; Chen BY; Yen CY J Hazard Mater; 2009 Aug; 167(1-3):995-1001. PubMed ID: 19237244 [TBL] [Abstract][Full Text] [Related]
3. Effect of substituents in aromatic amines on the activation energy of epoxy-amine reaction. Zhang Y; Vyazovkin S J Phys Chem B; 2007 Jun; 111(25):7098-104. PubMed ID: 17530886 [TBL] [Abstract][Full Text] [Related]
4. Chlorination of 2-phenoxypropanoic acid with NCP in aqueous acetic acid: using a novel ortho-para relationship and the para/meta ratio of substituent effects for mechanism elucidation. Segurado MA; Reis JC; de Oliveira JD; Kabilan S; Shanthi M J Org Chem; 2007 Jul; 72(14):5327-36. PubMed ID: 17567074 [TBL] [Abstract][Full Text] [Related]
5. A ruthenium-catalyzed reaction of aromatic ketones with arylboronates: a new method for the arylation of aromatic compounds via C-H bond cleavage. Kakiuchi F; Kan S; Igi K; Chatani N; Murai S J Am Chem Soc; 2003 Feb; 125(7):1698-9. PubMed ID: 12580585 [TBL] [Abstract][Full Text] [Related]
6. Ruthenium-catalyzed functionalization of aryl carbon-oxygen bonds in aromatic ethers with organoboron compounds. Kakiuchi F; Usui M; Ueno S; Chatani N; Murai S J Am Chem Soc; 2004 Mar; 126(9):2706-7. PubMed ID: 14995180 [TBL] [Abstract][Full Text] [Related]
7. A convenient and efficient route for the allylation of aromatic amines and alpha-aryl aldehydes with alkynes in the presence of a Pd(0)/PhCOOH combined catalyst system. Patil NT; Wu H; Kadota I; Yamamoto Y J Org Chem; 2004 Dec; 69(25):8745-50. PubMed ID: 15575752 [TBL] [Abstract][Full Text] [Related]
8. Substituent cross-interaction effects on the electronic character of the C=N bridging group in substituted benzylidene anilines--models for molecular cores of mesogenic compounds. A 13C NMR study and comparison with theoretical results. Neuvonen H; Neuvonen K; Fülöp F J Org Chem; 2006 Apr; 71(8):3141-8. PubMed ID: 16599611 [TBL] [Abstract][Full Text] [Related]
9. A DFT study on the Pd-mediated decarboxylation process of aryl carboxylic acids. Xue L; Su W; Lin Z Dalton Trans; 2010 Nov; 39(41):9815-22. PubMed ID: 20830415 [TBL] [Abstract][Full Text] [Related]
10. Theoretical investigations on the reaction of monosubstituted tertiary-benzylamine selenols with hydrogen peroxide. Heverly-Coulson GS; Boyd RJ J Phys Chem A; 2010 Oct; 114(39):10706-11. PubMed ID: 20836530 [TBL] [Abstract][Full Text] [Related]
11. Geometry and energy of substituted phenyl cations. Lazzaroni S; Dondi D; Fagnoni M; Albini A J Org Chem; 2008 Jan; 73(1):206-11. PubMed ID: 18052294 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of biladienone and bilatrienone by coupled oxidation of tetraarylporphyrins. Asano N; Uemura S; Kinugawa T; Akasaka H; Mizutani T J Org Chem; 2007 Jul; 72(14):5320-6. PubMed ID: 17559279 [TBL] [Abstract][Full Text] [Related]
13. Controlled synthesis of CdSe and CdSe/CdS core/shell nanoparticles using Gemini surfactant Py-16-10-16 and their bioconjugates with BSA. Chang W; Shen Y; Xie A; Zhang H; Wang J; Lu W J Colloid Interface Sci; 2009 Jul; 335(2):257-63. PubMed ID: 19394633 [TBL] [Abstract][Full Text] [Related]
14. Investigation of substituent effects on the selectivity of 4pi-electrocyclization of 1,3-diarylallylic cations for the formation of highly substituted indenes. Smith CD; Rosocha G; Mui L; Batey RA J Org Chem; 2010 Jul; 75(14):4716-27. PubMed ID: 20568789 [TBL] [Abstract][Full Text] [Related]
15. Chemoselective aromatic azido reduction with concomitant aliphatic azide employing Al/Gd triflates/NaI and ESI-MS mechanistic studies. Kamal A; Markandeya N; Shankaraiah N; Reddy CR; Prabhakar S; Reddy CS; Eberlin MN; Silva Santos L Chemistry; 2009 Jul; 15(29):7215-24. PubMed ID: 19544509 [TBL] [Abstract][Full Text] [Related]
16. Influence of the substituent on selective photocatalytic oxidation of aromatic compounds in aqueous TiO2 suspensions. Palmisano G; Addamo M; Augugliaro V; Caronna T; García-López E; Loddo V; Palmisano L Chem Commun (Camb); 2006 Mar; (9):1012-4. PubMed ID: 16491193 [TBL] [Abstract][Full Text] [Related]
17. Bromine as the ortho-directing group in the aromatic metalation/silylation of substituted bromobenzenes. Luliński S; Serwatowski J J Org Chem; 2003 Nov; 68(24):9384-8. PubMed ID: 14629161 [TBL] [Abstract][Full Text] [Related]
18. Substituent effect on the interaction of aromatic primary amines and diamines with supercritical CO(2) from infrared spectroscopy and quantum calculations. Farbos B; Tassaing T Phys Chem Chem Phys; 2009 Jul; 11(25):5052-61. PubMed ID: 19562135 [TBL] [Abstract][Full Text] [Related]
19. Photocatalytic reduction of an azide-terminated self-assembled monolayer using CdS quantum dots. Radhakrishnan C; Lo MK; Warrier MV; Garcia-Garibay MA; Monbouquette HG Langmuir; 2006 May; 22(11):5018-24. PubMed ID: 16700589 [TBL] [Abstract][Full Text] [Related]
20. Mapping the optical properties of CdSe/CdS heterostructure nanocrystals: the effects of core size and shell thickness. van Embden J; Jasieniak J; Mulvaney P J Am Chem Soc; 2009 Oct; 131(40):14299-309. PubMed ID: 19754114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]