These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 1534711)

  • 1. Recent advances in the molecular biology of cardiac growth and hypertrophy: of mouse and man.
    Chien KR
    Cardiologia; 1992 Feb; 37(2):95-103. PubMed ID: 1534711
    [No Abstract]   [Full Text] [Related]  

  • 2. MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium.
    Kolodziejczyk SM; Wang L; Balazsi K; DeRepentigny Y; Kothary R; Megeney LA
    Curr Biol; 1999 Oct; 9(20):1203-6. PubMed ID: 10531040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of norepinephrine-induced cardiac hypertrophy in s100beta transgenic mice.
    Tsoporis JN; Marks A; Kahn HJ; Butany JW; Liu PP; O'Hanlon D; Parker TG
    J Clin Invest; 1998 Oct; 102(8):1609-16. PubMed ID: 9788975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular basis of myocardial hypertrophy.
    Puri PL; Natoli G; Avantaggiati ML; Balsano C; De Marzio P; Levrero M
    Ann Ital Med Int; 1994; 9(3):160-5. PubMed ID: 7946893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential splicing of fibronectin pre-messenger ribonucleic acid during cardiac ontogeny and development of hypertrophy in the rat.
    Farhadian F; Barrieux A; Lortet S; Marotte F; Oliviero P; Rappaport L; Samuel JL
    Lab Invest; 1994 Oct; 71(4):552-9. PubMed ID: 7967511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of basic leucine zipper transcription is a major mediator of atrial dilatation.
    Kehat I; Heinrich R; Ben-Izhak O; Miyazaki H; Gutkind JS; Aronheim A
    Cardiovasc Res; 2006 Jun; 70(3):543-54. PubMed ID: 16631626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the insulin-like growth factor 1 (IGF1)/phosphoinositide-3-kinase (PI3K) pathway mediating physiological cardiac hypertrophy.
    McMullen JR; Izumo S
    Novartis Found Symp; 2006; 274():90-111; discussion 111-7, 152-5, 272-6. PubMed ID: 17019808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The forms of variability in a cell population as well as in an organism population. The biology of the development of the cardiac myocytes].
    Brodskiĭ VIa
    Ontogenez; 1994; 25(5):29-43. PubMed ID: 7991235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct injection and expression in vivo of full-length cDNA of the cardiac isoform of alpha-2 macroglobulin induces cardiac hypertrophy in the rat heart.
    Rajan S; Radhakrishnan J; Rajamanickam C
    Basic Res Cardiol; 2003 Feb; 98(1):39-49. PubMed ID: 12494268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Of mouse and man: molecular switches that control cardiac growth and development.
    Miller-Hance WC; Chien KR
    Heart Dis Stroke; 1993; 2(2):157-65. PubMed ID: 8149103
    [No Abstract]   [Full Text] [Related]  

  • 11. cDNA sequence and characterization of the gene that encodes human myotrophin/V-1 protein, a mediator of cardiac hypertrophy.
    Anderson KM; Berrebi-Bertrand I; Kirkpatrick RB; McQueney MS; Underwood DC; Rouanet S; Chabot-Fletcher M
    J Mol Cell Cardiol; 1999 Apr; 31(4):705-19. PubMed ID: 10329199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcitonin gene-related peptide (CGRP) and hypertrophy of cardiomyocytes.
    Ito H; Bell D; Tamamori M; Nozato T; Shimojo T; Adachi S; Abe S; Marumo F; Hiroe M
    Heart Vessels; 1997; Suppl 12():15-7. PubMed ID: 9476534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgenic myocardial overexpression of prokineticin receptor-2 (GPR73b) induces hypertrophy and capillary vessel leakage.
    Urayama K; Dedeoglu DB; Guilini C; Frantz S; Ertl G; Messaddeq N; Nebigil CG
    Cardiovasc Res; 2009 Jan; 81(1):28-37. PubMed ID: 18806277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SRF-dependent gene expression in isolated cardiomyocytes: regulation of genes involved in cardiac hypertrophy.
    Nelson TJ; Balza R; Xiao Q; Misra RP
    J Mol Cell Cardiol; 2005 Sep; 39(3):479-89. PubMed ID: 15950986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy.
    Buitrago M; Lorenz K; Maass AH; Oberdorf-Maass S; Keller U; Schmitteckert EM; Ivashchenko Y; Lohse MJ; Engelhardt S
    Nat Med; 2005 Aug; 11(8):837-44. PubMed ID: 16025126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac steroidogenesis and glucocorticoid in the development of cardiac hypertrophy during the progression to heart failure.
    Ohtani T; Mano T; Hikoso S; Sakata Y; Nishio M; Takeda Y; Otsu K; Miwa T; Masuyama T; Hori M; Yamamoto K
    J Hypertens; 2009 May; 27(5):1074-83. PubMed ID: 19349910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of genes regulated during mechanical load-induced cardiac hypertrophy.
    Johnatty SE; Dyck JR; Michael LH; Olson EN; Abdellatif M
    J Mol Cell Cardiol; 2000 May; 32(5):805-15. PubMed ID: 10775485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular biology of cardiac growth and hypertrophy.
    Parker TG
    Herz; 1993 Aug; 18(4):245-55. PubMed ID: 8375804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expressions and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia to hypertrophy.
    Poolman RA; Brooks G
    J Mol Cell Cardiol; 1998 Oct; 30(10):2121-35. PubMed ID: 9799664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling.
    Muñoz JP; Collao A; Chiong M; Maldonado C; Adasme T; Carrasco L; Ocaranza P; Bravo R; Gonzalez L; Díaz-Araya G; Hidalgo C; Lavandero S
    Biochem Biophys Res Commun; 2009 Oct; 388(1):155-60. PubMed ID: 19654000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.